Title:

DEGREE OF RE-EXPANSION FOLLOWING VITRIFICATION/REWARMING OF EUPLOID BLASTOCYSTS IS INVERSELY CORRELATED WITH IMPLANTATION AND ONGOING PREGNANCY/LIVE BIRTH RATES

Authors:

Sydney Chang, MD1,2, Taraneh Gharib Nazem, MD1,2, Dmitry Gounko, MA2, Marlena Duke, MSc, ELD2, Christine Briton-Jones, PhD, HCLD1,2, Alan B Copperman, MD1,2 and Beth McAvey, MD1,2

Affiliations:

1. Icahn School of Medicine at Mount Sinai, Klingenstein Pavilion 1176 Fifth Avenue 9th Floor New York, New York, United States, 10029

2. Reproductive Medicine Associates of New York, 635 Madison Ave 10th Floor New York, New York, United States, 10022

Objective:

Routine implementation of blastocyst culture, preimplantation genetic testing, and freeze-all cycles has resulted in supernumerary cryopreserved euploid blastocysts available for frozen embryo transfer (FET). Often faced with a selection of chromosomally normal embryos, embryologists and clinicians turn to embryo morphology, morphokinetics, and timing of blastulation and cavitation to develop prognostic criteria. A recent study showed that re-expansion of vitrified/rewarmed blastocysts strongly correlated with implantation compared to blastocysts that did not re-expand.1 Yet, that study did not incorporate PGT-A and was limited by small sample size. Thus, our objective was to evaluate the association between degree of re-expansion prior to FET and clinical outcomes among euploid blastocysts.

Design:

Retrospective, cohort study

Materials and Methods:
The study included patients at an academic center who underwent single euploid FET cycle(s) from 2012-2019. Embryo vitrification/rewarming were performed with the Cryotop method (Kitazato). Embryos were classified into 3 groups: (1) fully re-expanded, (2) partially re-expanded, and (3) not re-expanded. Images of embryos recorded as not re-expanded after 3-4 hours post-warming were manually compared to the image taken immediately post-warming to determine whether partial re-expansion had occurred during the culture period. Primary outcome was ongoing pregnancy/live birth (OP/LB) rate. Secondary outcomes were rates of clinical pregnancy (CP) and early pregnancy loss (EPL). Data were evaluated with T-tests, chi-square tests, and generalized estimating equations.

Results:

The study included 4440 single euploid FET cycles from 2968 patients. There were 118 cycles (2.7%) where embryos were not fully re-expanded 3-4 hours post-warming. Of these, 58 had partially re-expanded and 59 did not re-expand prior to FET. There was a higher proportion of day 7 embryos (27.1%) in the not re-expanded compared to the fully re-expanded cohort (2.6%). After controlling for confounders, blastocysts that did not re-expand after 3-4 hours were associated with a significant decrease in OP/LB (OR 0.19 [95% CI 0.09-0.40], p<0.0001) and CP (OR 0.19 [95% CI 0.10-0.35], p<0.0001), compared to fully re-expanded blastocysts. There was no significant difference in OP/LB or CP rates between partially and fully re-expanded groups. There was no difference in EPL rate between the 3 groups.

Conclusion:

In this study assessing the contribution of embryo re-expansion after vitrification/warming in a single euploid FET model, we showed reduced CP and OP/LB rates in embryos that did not re-expand. Our findings are consistent with Coello et al. who found a lower implantation rate for embryos that did not fully re-expand at FET compared to those that did.1 Though transfer of blastocysts that did not re-expand resulted in a 76% decrease in OP/LB rate, our study also found no difference in EPL. Patients can therefore be reassured that once implantation has been achieved, there is no demonstrable increase in EPL.