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Objective: To develop an interpretable machine learningmodel for optimizing the day of trigger in terms of mature oocytes (MII), fertil-
ized oocytes (2PNs), and usable blastocysts.
Design: Retrospective study.
Setting: A group of three assisted reproductive technology centers in the United States.
Patient(s): Patients undergoing autologous in vitro fertilization cycles from 2014 to 2020 (n ¼ 30,278).
Intervention(s): None.
Main Outcome Measure(s): Average number of MII oocytes, 2PNs, and usable blastocysts.
Result(s): A set of interpretable machine learning models were developed using linear regression with follicle counts and estradiol
levels. When using the model to make day-by-day predictions of trigger or continuing stimulation, possible early and late triggers
were identified in 48.7% and 13.8% of cycles, respectively. After propensity score matching, patients with early triggers had on
average 2.3 fewer MII oocytes, 1.8 fewer 2PNs, and 1.0 fewer usable blastocysts compared with matched patients with on-time
triggers, and patients with late triggers had on average 2.7 fewer MII oocytes, 2.0 fewer 2PNs, and 0.7 fewer usable blastocysts
compared with matched patients with on-time triggers.
Conclusion(s): This study demonstrates that it is possible to develop an interpretable machine learning model for optimizing the day of
trigger. Using our model has the potential to improve outcomes for many in vitro fertilization patients. (Fertil Steril� 2022;-:-–-.
�2022 by American Society for Reproductive Medicine.)
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DIALOG: You can discuss this article with its authors and other readers at https://www.fertstertdialog.com/posts/34691
T he goal of ovarian stimulation
during in vitro fertilization
(IVF) cycles is to promote multi-

follicular development to retrieve mul-
tiple high-quality oocytes. During
ovarian stimulation, physicians make
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a series of decisions that are critical to
the outcome of the cycle, such as which
protocol to use and what starting doses
of gonadotropins to prescribe. One of
the most important decisions is when
to give the final trigger injection to
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induce the final follicular maturation.
Triggering too early may not allow the
oocytes to reach maturity, whereas
triggering too late may result in post-
mature oocytes as well as an increased
risk of ovarian hyperstimulation syn-
drome. The optimal time to administer
the trigger injection is a subjective de-
cision and varies widely across prac-
tices and physicians, with limited data
supporting any strict objective criteria.

Numerous studies have explored
the relationship between follicle sizes
and mature (MII) oocyte outcomes, re-
porting that follicles that are either
too small or too large are less likely to
yield MII oocytes (1–4). Modeling
techniques have been used in
retrospective studies to identify
follicles of size 12–19 mm on the day
1
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of trigger as having the highest likelihood of producing
mature oocytes (5). The ideal way to determine which
follicle sizes yield the highest maturation rates would be
through individual follicle aspiration; however, such studies
are difficult to conduct on a large scale. One study
performed individual aspiration of binned follicle group
sizes (>18 mm, 16–18 mm, 13–15 mm, 10–12 mm, and
<10 mm) and showed that oocyte maturation rates increase
with follicle size; however, the point at which follicles reach
post-maturity was not established (6). Although previous
studies have established that there is a high correlation be-
tween follicle sizes and mature oocyte outcomes, it remains
unclear how to apply these findings for optimizing the timing
of trigger for an individual patient.

In recent years, the field of assisted reproduction has
recognized that artificial intelligence techniques can be
used to support clinical decision-making during ovarian stim-
ulation, especially with regard to optimizing the day of
trigger. One of the earliest studies in this area used machine
learning algorithms trained on follicle sizes and other param-
eters to predict whether a physician would continue stimula-
tion or trigger (7). A more recent study developed causal
machine learning techniques using follicle sizes, estradiol
(E2) levels, and patient parameters to recommend continuing
stimulation or trigger, with the goal of maximizing the num-
ber of fertilized oocytes (2PNs) and blastocysts (8). A potential
limitation of these earlier studies is that they relied on black-
box machine learning algorithms, which are unable to
explain the basis for their recommendations. As the IVF field
considers the adoption of these promising technologies, there
is a question of whether physicians will trust black-box ap-
proaches or will prefer interpretable techniques that can
explain their reasoning. As such, there is a need for further
studies that explore the use of interpretable artificial intelli-
gence for clinical decision support.

In this study, we present an interpretable machine
learning approach for predicting the optimal day of trigger
during ovarian stimulation. Our model uses a set of linear
regression models to predict the number of MII oocytes
retrieved if triggered ‘‘today vs tomorrow.’’ A key advantage
of this approach is that it can explain the basis for the recom-
mendations. In addition, our approach provides accurate pre-
dictions of next-day E2 levels and MII oocyte outcomes that
may be helpful to the physician and can be used for patient
counseling. We demonstrate the performance of the
model using real-world simulations in which the decisions
of continuing stimulation or waiting are evaluated on a
day-by-day basis. Our hypothesis for this study was that the
use of an interpretable machine learning algorithm for opti-
mizing the day of trigger may result in improved outcomes
while keeping E2 levels within a safe range.
MATERIALS AND METHODS
Ethics Approval

This study was conducted after the research protocol was
approved by the WCG Institutional Review Board (Study no.
1308073). Patient information was deidentified before
analysis.
2

Study Design and Participants

This was a retrospective study using data collected from three
different IVF clinics in the United States. Historical, deidenti-
fied electronic medical record (EMR) data were collected for
IVF retrieval cycles started between 2014 and 2020. Records
were filtered for autologous, noncanceled cycles. A total of
30,278 cycles were included in this study. An overview of
the study design and methodology is shown in
Supplemental Figure 1 (available online).
Data Preparation

Data for training and testing the models were parsed from the
EMRs. The parameters investigated included age, body mass
index (BMI), number of previous IVF cycles, baseline antral
follicle count (AFC), baseline anti-m€ullerian hormone
(AMH) levels, baseline E2 levels, cycle length in days, and
day-by-day measurements of follicle sizes and E2 levels
from monitoring visits during ovarian stimulation. Follicle
measurements were binned into 6 groups on the basis of
their diameter: <11 mm, 11–13 mm, 14–15 mm, 16–17
mm, 18–19 mm, and >19 mm. The primary outcome was
the number ofMII oocytes retrieved, and cycles were excluded
if they were missing this outcome. Additional outcomes
included 2PNs and usable blastocysts (defined as the total
number of transferred and frozen blastocysts). Furthermore,
cycles with apparent data entry errors were excluded, such
as cycles in which the number of MII oocytes exceeded the
number of oocytes retrieved. Data were split by patient ID
into train (70%), validation (10%), and test (20%) data sets
stratified by three sites. Performance in this article is
reported on the test data set. Cycles from all stimulation pro-
tocols were included in the study. After data preparation,
there were 2,555 cycles from site 1, 13,051 cycles from site
2, and 14,672 cycles from site 3.
Modeling Strategy

Models were developed to enable the prediction of MII out-
comes if a patient is triggered in the current day (today)
compared with the next day (tomorrow), with the goal of hav-
ing model interpretability. To predict the number of MII oo-
cytes retrieved if triggered today or tomorrow, linear
regression models were developed using follicle counts and
E2 levels measured on the day of trigger and one day before
the day of trigger, respectively. Finally, an E2 forecasting
model was developed to predict next-day E2 levels using fol-
licle counts and E2 levels measured 1 day earlier. Together,
the combination of these models allowed a comparison of
MII outcomes if triggered today vs. tomorrow.

Linear regression model development. Linear regression
models were developed to predict the outcome of MII oocytes
and next-day E2 levels using the candidate parameters previ-
ously mentioned. Approximately 83% of patient cycles had
follicle and E2 measurements on the day of trigger, which
were used to develop the same-day (trigger today) MII oocyte
prediction model. Approximately 57% of patient cycles had
follicle and E2 measurements on the day before trigger, which
were used to develop the next-day (trigger tomorrow) MII
VOL. - NO. - / - 2022



FIGURE 1
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oocyte prediction and E2 prediction models. All input param-
eters were standardized by subtracting the mean and dividing
by the standard deviation of the training data set. Recursive
feature elimination was used to identify the most significant
parameters. Final models using only the most significant fea-
tures were trained on the training data set and tuned on the
validation data set, and performance was evaluated on the
test data set by calculating the mean absolute error (MAE)
and R2 between the predicted number of MII oocytes and
actual number of MII oocytes.

Follicle imputation. To increase the reliability of follicle
measurements, a simple follicle imputation algorithmwas im-
plemented for each patient record. This algorithm employed a
growth constraint on the binned follicle measurements start-
ing on the second monitoring visit to ensure that each
observed follicle either grew or remained the same size as
the cycle continued.

Trigger-day recommendation algorithm. A trigger-day
recommendation algorithm was developed using the set of
linear regression models. For each patient in the test data
set, the algorithm evaluated each of the monitoring visits
day-by-day, starting from day 7, to simulate real-world sce-
narios. For each day of stimulation, the number of MII oo-
cytes were predicted if triggered today and if triggered
tomorrow, and the E2 level tomorrow was predicted
(Supplemental Fig. 2). If the predicted number of MII oocytes
today vs tomorrow showed an increasing trend, the algo-
rithm recommended to continue stimulation. If the predicted
number of MII oocytes today vs. tomorrow showed a
decreasing trend, the algorithm recommended to trigger. In
addition, if the end of the stimulation cycle was reached
and the model had not yet recommended trigger, the
model would recommend continuing another day only if
the MII trend continued to increase and the predicted
number of MII oocytes was <15 and the predicted E2 was
<5,000 pg/mL.

Expected benefit from using the trigger model. Data from
patients in the test set were used to calculate the expected
VOL. - NO. - / - 2022
benefit of using the trigger-day recommendation model. By
comparing the model recommendations with the
actual trigger days, patients were classified as having an
early, on-time, or late trigger. To adjust for factors related
to being triggered early or late, propensity score matching
was used to match patients in the early/late group with pa-
tients in the on-time group. Propensity scores were calculated
by training a logistic regression model to predict whether a
patient would be triggered early/late or on-time using age,
BMI, baseline AMH level, and baseline AFC, on all patients
in the test set. Each patient’s propensity score was taken as
the predicted probability output of the logistic regression
model. Each patient in the early/late group was matched 1:1
with the patient in the on-time group with the closest propen-
sity score. Patients with early or late triggers were then
compared with matched patients with on-time triggers in
terms of average MII oocytes, 2PNs, and usable blastocysts
to calculate the expected benefit of using the model. A small
subset of cycles, which included MII outcomes but did not
measure usable blastocysts (e.g., cleavage-stage embryo
transfers or oocyte freezing cycles), were included for training
and testing the MII prediction models, but they were excluded
from the expected benefit analysis.
RESULTS
Supplemental Table 1 summarizes the patient demographics
and cycle information for the cycles included in the study.
The average day of trigger in our data set was 11.8� 1.9,
and the average number of monitoring visits per cycle was
4.5� 1.4. The linear regression model for predicting MII out-
comes on the day of trigger had a MAE of 2.87 oocytes and an
R2 of 0.64 on the test data set, and the model for predicting the
next-dayMII outcomes had anMAE of 3.02 oocytes and an R2

of 0.62 on the test data set. The next-day E2 levels were pre-
dicted with a MAE of 274 pg/mL and R2 of 0.88. Implementa-
tion of the follicle imputation algorithm improved the MAE
by 0.09 oocytes and R2 by 0.02. We also tried using general-
ized linear models with Poisson or negative binomial
3
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distributions, because they can be appropriate for data in
which the response variable contains positive integers.
However, in practice, we found that regular linear regression
performed the best (Supplemental Table 2).
Feature Importance

The most important feature for predicting the outcome of MII
oocytes on the day of trigger was follicles of size 14–15 mm,
followed by follicles of size 16–17 mm (Fig. 1). The least
important feature was large follicles of size>19 mm. For pre-
dicting the outcome of the next-day MII oocytes, follicles of
size 11–13 mm were of greatest importance, whereas follicles
of size >19 mm remained the least important. Precycle pa-
rameters such as age, BMI, AMH level, and AFC were not sig-
nificant in a multivariate model that included follicle counts
and E2 levels. To ensure data quality and to evaluate follicle
measurement noise, a separate model was developed to pre-
dict MII oocytes outcomes using follicle counts from the left
and right ovaries separately. This model showed that the left
and right follicle counts had similar coefficients for all bins,
with the exception of the smallest bin (%10 mm), and fol-
lowed the same feature importance trends as the original
model that adds together the follicles from both ovaries
(Fig. 2). Unstandardized model coefficients are shown in
Supplemental Table 3, representing how a unit change in
each predictor variable would change the predicted MII
outcome.
Early and Late Triggers Result in Fewer MII
Oocytes and 2PNs Compared with an Optimal
Trigger

In the test data set, possible early and late triggers were iden-
tified in 48.7% and 13.8% of cycles, respectively, by
comparing the actual day of trigger with what the model
FIGURE 2
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would have recommended (Fig. 3). Patient parameters (age,
BMI, baseline AMH level, and baseline AFC) were different
across early, on-time, and late trigger groups, indicating
that propensity matching was appropriate. Across all test
data, patients with early triggers had on average 5.3 fewer
MII oocytes, 4.0 fewer 2PNs, and 2.0 fewer usable blastocysts
compared with patients with on-time triggers. Patients with
late triggers had on average 7.9 fewer MII oocytes, 6.0 fewer
2PNs, and 2.9 fewer usable blastocysts compared with pa-
tients with on-time triggers. After propensity score matching,
patients with early triggers had on average 2.3 fewer MII oo-
cytes, 1.8 fewer 2PNs, and 1.0 fewer usable blastocysts, and
patients with late triggers had on average 2.7 fewer MII oo-
cytes, 2.0 fewer 2PNs, and 0.7 fewer usable blastocysts
compared with matched patients with on-time triggers
(Table 1). After propensity matching, the patient parameters
between groups were not statistically different.

A subanalysis was performed for patients who did not
reach the threshold of 15 predicted MII oocytes (85% of all cy-
cles). In this group, possible early and late triggers were iden-
tified in 59.3% and 16.8% of cycles, respectively. Patients
with early triggers had on average 1.0 fewer MII oocytes,
0.6 fewer 2PNs, and 0.4 fewer usable blastocysts, and patients
with late triggers had on average 3.6 fewer MII oocytes, 2.7
fewer 2PNs, and 1.3 fewer usable blastocysts compared with
patients with on-time triggers.
DISCUSSION
This study is one of the first to develop an interpretable ma-
chine learning model for optimizing the day of trigger during
ovarian stimulation. Our results show that over half of all
cycles had possible early or late triggers on the basis of retro-
spective analysis. After propensity score matching, patients
with early triggers had on average 2.3 fewer MII oocytes,
1.8 fewer 2PNs, and 1.0 fewer usable blastocysts, and patients
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FIGURE 3
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Example results in which the day of recommended trigger was different from that of the actual trigger. Left: Example of a possible late trigger in
which the model recommends trigger on day 11 but the actual trigger was on day 12. Right: Example of a possible early trigger, in which the model
recommends trigger on day 11 but the actual trigger was on day 10. Note that in testing our model, the decision of trigger or continue stimulation
was evaluated on a day-by-day basis starting from day 7 of stimulation. Only the final decision is shown here for simplicity.
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with late triggers had on average 2.7 fewer MII oocytes, 2.0
fewer 2PNs, and 0.7 fewer usable blastocysts compared with
matched patients with on-time triggers. These results indicate
that significant improvements in outcomes could potentially
be achieved for over half of all ovarian stimulation cycles by
following the recommendations of our model.

This study places an emphasis on using interpretable ma-
chine learning techniques. Previous studies on optimizing the
day of trigger have used a machine learning model with
bagged decision trees, consisting of an ensemble of 30
different models (8). Such an approach has the advantage of
capturing more complex and nonlinear relationships between
the input parameters. This important work was one of the first
to demonstrate that it is possible to use machine learning for
trigger optimization. However, black-box models are inher-
ently difficult to interpret and could have unseen problems
such as overfitting or spurious correlations. The results
reported in an earlier study (8) showed that outcomes could
be improved by 1.43 more 2PNs and 0.57 more usable
blastocysts per cycle on average using their model. Our results
also show comparable improvements in 2PNs and usable
blastocysts and are important for two reasons. First, our
work confirms the previously reported results but across mul-
tiple different clinics and with a much larger sample size. Sec-
ond, our work shows that a linear, interpretable model may
provide performances similar to those of more complicated
black-box models. This is not surprising, given that the inputs
to these models consist of a small number of parameters.
Indeed, when applying more complicated models such as
random forest and XGBoost regressors to our data set to pre-
dict the outcome of MII oocytes, we found that these more
complex models did not significantly improve the accuracy
of prediction, despite efforts to optimize hyperparameters
(Supplemental Table 2). For nonlinear models, relative feature
importance can be retrospectively inferred using various post
hoc analyses; however, these analyses do not directly explain
VOL. - NO. - / - 2022
how features are used to generate predicted outputs, and
therefore the models remain black-box. As the field of assis-
ted reproduction investigates the use of machine learning
technologies, model interpretability will likely be an impor-
tant part of achieving clinical trust and adoption (9).

The standardized model coefficients indicate that follicles
of 14–15mm and 16–17mm in diameter were most important
for predicting the outcome of MII oocytes if triggered today,
whereas follicles of %10 mm and >19 mm were the least
important (Fig. 1). This result is in line with the accepted
notion that very small follicles are less likely to yield a mature
oocyte (5, 6) and supports the idea that larger follicles may
degenerate or produce postmature oocytes (10). Our model
provides greater fidelity than the standard practice of moni-
toring lead follicle size and could provide physicians with
more detailed temporal information to make an informed
trigger decision. For example, if a decrease in the predicted
number of MII oocytes were to be observed on consecutive
days, the model coefficients would suggest that the lead fol-
licles are growing too big, which can be verified by the physi-
cian. Conversely, an increase in the predicted number of MII
oocytes could suggest that the smaller follicles are continuing
to grow into the optimal size range, which also can be
confirmed.

Unstandardized model coefficients allow for direct inter-
pretability on how one additional follicle of any given size
changes the predicted MII outcome. For example, as shown
in Supplemental Table 3, a single follicle of size 11–13 mm
contributes 0.52 oocytes for the trigger today model and
0.71 oocytes for the trigger tomorrow model. For a patient
with 10 follicles of size 11–13 mm, this represents an addi-
tional 1.9 MII oocytes that could be obtained from this follicle
group by waiting one additional day before trigger. Of course,
this must be balanced against the potential loss of MII oocytes
from other follicles that are growing too large. As shown in
Supplemental Table 3, a single follicle of size 16–17 mm
5



TABLE 1

Comparison of patient parameters and laboratory outcomes for patients in the test data set with on-time triggers, early triggers, and late triggers,
as determined by the model

Patient parameters Early triggers
On-time triggers

(matched with early) Late triggers
On-time triggers

(matched with late)

Sample size, n (%) 2,416 (48.7) 2,416 685 (13.8) 685
Age (y) 37.3 37.3 37.3 38.1
BMI (kg/m2) 25.3 25.3 26.7 27.9
Baseline AMH (ng/mL) 1.95 2.04 1.34 1.42
Baseline AFC 10.6 10.2 8.5 8.7
No. of MII oocytes 8.4 10.7 5.8 8.5
No. of 2PNs 6.5 8.3 4.4 6.4
No. of usable blastocysts 3.2 4.2 2.4 3.1
Note: Patients with early and late triggers were propensity matched to patients with on-time triggers. Differences between on-time and early/late triggers were all statistically significant (P value
< .01) for MII oocytes, 2PNs, and usable blastocysts. AFC ¼ antral follicle count; AMH ¼ antim€ullerian hormone; BMI ¼ body mass index; MII ¼ mature oocyte; 2PNs ¼ fertilized oocyte.

Fanton. Machine learning for trigger optimization. Fertil Steril 2022.
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contributes 0.69 oocytes for the trigger today model and 0.57
oocytes for the trigger tomorrow model. For a patient with 10
follicles of size 16–17 mm, this represents 1.2 fewer MII
oocytes that would be obtained from this follicle group by
waiting another day. The full linear regression model weighs
the relative contributions of each follicle group and provides
an objective assessment of the potential benefit or harm of
waiting another day before the trigger.

In developing our model, we explored different outcomes
such as oocytes retrieved, MII oocytes, 2PNs, and usable blas-
tocysts. Although all of these outcomes are important, the
goal of a successful IVF cycle is of course a healthy live birth.
It was not possible with our data to calculate accurate cumu-
lative live birth rates, but our estimates showed that the oo-
cytes retrieved, MII oocytes, and 2PNs all had a positive
correlation with live birth outcomes, agreeing with previous
studies (11). However, there may be a plateau for higher
responders, which has been suggested in other studies (12,
13). We decided to use MII oocytes as our primary outcome,
because the number of mature oocytes is a direct outcome
of ovarian stimulation, whereas other outcomes such as
2PNs and blastocysts depend on the quality of sperm and lab-
oratory procedures. We note that most of our data came from
intracytoplasmic sperm injection cycles in which MII oocytes
can be most accurately counted. However, we also included
conventional IVF cycles if the EMR had an entry for MII oo-
cytes, as we found that excluding conventional IVF cycles
had no meaningful impact on our model performance,
improving model accuracy by less than 1%.

In evaluating our model performance, the recommenda-
tion would default to trigger if the end of the cycle had
been reached and the predicted number of MII oocytes had
surpassed R15 oocytes or the predicted E2 level had sur-
passedR5,000 pg/mL. These cutoffs would of course vary be-
tween physicians and clinics, but the purpose of using them
was to demonstrate that we can optimize outcomes within a
reasonable range, and not simply push the high responders
to yield more oocytes, at the cost of increased hyperstimula-
tion risk. Furthermore, among only patients who did not
exceed the 15 MII oocyte cutoff, we showed improved
6

outcomes for on-time patients compared with late and early
patients, demonstrating that optimizing the trigger timing
could improve outcomes among patients who are not high
responders.

Our model to predict the outcome of MII oocytes relies on
the accurate measurement of follicle sizes. However, it is
known that follicle measurements can be subject to intra-
and interobserver variability (14–16). In addition, as the
number of follicles increases, our data suggest that small
follicles may not always be counted. The reasons for this
are not clear, but it could be because more importance is
placed on the larger follicles that are expected to yield a
mature oocyte or that follicles that are unlikely to grow
enough are ignored closer to the time of trigger. Other
possibilities include vanishing follicles, which is a rarely
observed phenomenon in women with advancing age (17).
In general, however, we expect that follicles should not
disappear during the ovarian stimulation process. For this
reason, we implemented a follicle imputation algorithm to
make sure that the total follicle count always stayed the
same or increased. This imputation helped achieve a small
improvement in the performance of our model. Linear
regression models trained on follicles separated by ovary
show that the right and left ovary bins had very similar
coefficients for follicle bin sizes, with the exception of the
smallest bin (%10 mm) that had a larger coefficient for the
left ovary than that for the right ovary. This observation is
likely a result of the aforementioned inconsistencies in
small follicle measurements across sites. Despite this, the
small follicle bin for our original model, which adds
together the follicles from both ovaries, had a strong
predictive value in our models and was therefore kept as an
input feature. We believe that successful clinical use of our
model in the future will depend on accurate follicle
counting at each monitoring visit during ovarian stimulation.

This study is not without limitations; the primary limita-
tion is its retrospective nature. We did not differentiate be-
tween different trigger medications or types of protocols,
which should be explored further in future work. Some cycles
in our data set had incomplete or missing data. For example,
VOL. - NO. - / - 2022
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in some cycles, there were no ultrasound measurements taken
on the day of trigger. These cycles were therefore excluded
from our analysis, which could have introduced a sampling
bias. It is possible that our results and feature importance
could be biased by the trigger practice of the clinics, for
example, if patients are always triggered when two or more
follicles reach 18 mm in size. However, the possibility for
bias should be reduced by the fact that our training data
comes from three separate clinics with varying practices on
when to trigger patients. In addition, our data include patients
pushed further than a clinic’s general guidelines as well as
those triggered earlier on the basis of E2 levels. Additionally,
although we implemented an E2 level threshold as a surrogate
marker for the risk of ovarian hyperstimulation syndrome, we
did not have data on which patients had actually been hyper-
stimulated. Similarly, our models were not able to incorporate
risks of other adverse clinical events, such as premature
ovulation, given that our data set included only completed
cycles. Expanding our data set in future work will allow for
the ability to train models to recognize patients at risk for
these complications. Finally, our model did not take into ac-
count a patient’s previous stimulation results, as our analysis
did not show that outcomes from a patient’s first stimulation
could further improve predictions of outcomes in their second
stimulation. However, this should also be further investigated
in future work.
CONCLUSION
This study is one of the first to develop an interpretable ma-
chine learning model for optimizing the day of trigger dur-
ing ovarian stimulation. Our results indicate that an
interpretable machine learning model can potentially
improve outcomes in a considerable number of patients.
Future work will focus on continuing to increase the size
and diversity of our training data set and performing pro-
spective validation studies to show improved patient out-
comes with the use of our model.
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