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Improving preeclampsia risk prediction by modeling
pregnancy trajectories from routinely collected electronic
medical record data
Shilong Li 1,5, Zichen Wang1,5, Luciana A. Vieira 2, Amanda B. Zheutlin1, Boshu Ru1, Emilio Schadt 1, Pei Wang 3,
Alan B. Copperman1,2,4, Joanne L. Stone2, Susan J. Gross 1,3, Yu-Han Kao1, Yan Kwan Lau1, Siobhan M. Dolan2,3, Eric E. Schadt1,3✉ and
Li Li1,3✉

Preeclampsia is a heterogeneous and complex disease associated with rising morbidity and mortality in pregnant women and
newborns in the US. Early recognition of patients at risk is a pressing clinical need to reduce the risk of adverse outcomes. We
assessed whether information routinely collected in electronic medical records (EMR) could enhance the prediction of preeclampsia
risk beyond what is achieved in standard of care assessments. We developed a digital phenotyping algorithm to curate 108,557
pregnancies from EMRs across the Mount Sinai Health System, accurately reconstructing pregnancy journeys and normalizing these
journeys across different hospital EMR systems. We then applied machine learning approaches to a training dataset (N= 60,879) to
construct predictive models of preeclampsia across three major pregnancy time periods (ante-, intra-, and postpartum). The
resulting models predicted preeclampsia with high accuracy across the different pregnancy periods, with areas under the receiver
operating characteristic curves (AUC) of 0.92, 0.82, and 0.89 at 37 gestational weeks, intrapartum and postpartum, respectively. We
observed comparable performance in two independent patient cohorts. While our machine learning approach identified known
risk factors of preeclampsia (such as blood pressure, weight, and maternal age), it also identified other potential risk factors, such as
complete blood count related characteristics for the antepartum period. Our model not only has utility for earlier identification of
patients at risk for preeclampsia, but given the prediction accuracy exceeds what is currently achieved in clinical practice, our model
provides a path for promoting personalized precision therapeutic strategies for patients at risk.

npj Digital Medicine            (2022) 5:68 ; https://doi.org/10.1038/s41746-022-00612-x

INTRODUCTION
Preeclampsia (PE) remains one of the great challenges in
obstetrics. It contributes substantially to maternal morbidity and
maternal mortality worldwide, and within the US, accounted for
6.9% of pregnancy-related deaths from 2011 to 2016 (CDC
Reproductive Health: Maternal Mortality) and is substantially
higher in other regions. There are significant implications for
newborns as well, with PE being responsible for a large
percentage of medically indicated preterm deliveries1.
PE is characterized by elevated blood pressure during

pregnancy, starting after 20 gestational weeks. While moderately
elevated blood pressure itself is not necessarily harmful, in the
case of PE, elevated blood pressure reflects the multi-system
endothelial dysfunction leading to vascular, renal, and liver
impairment associated with this disease. Eclampsia, defined as
convulsions during pregnancy and/or postpartum irrespective of
hypertension, is an especially devastating outcome and may be
associated with maternal hypoxia and death. The underlying
mechanisms are not fully understood but recent evidence
suggests involvement of multiple factors and pathways, including
maternal factors and abnormal trophoblast differentiation2. This
underlying complexity helps to explain the unpredictable nature
of PE. PE can vary not only in severity, but also in timing of onset
and impact on fetal growth. Although there are serious clinical

sequela due to PE, antenatal monitoring to determine when
delivery outweighs the risk of ongoing expectant management
delivery is the standard clinical care plan for PE patients, given
delivery is currently the only recognized treatment for PE.
Currently, women are routinely screened for PE at the first

prenatal visit using clinical factors. Some centers may also include
serum protein markers and ultrasound Doppler studies to screen
for early PE. During subsequent visits, blood pressure and
proteinuria screening are conducted. Ideally, improved screening
could direct clinical care through increased prenatal surveillance
and adoption of prophylactic measures, such as low dose aspirin
that has been shown to reduce risk of preterm PE and potentially
other perinatal complications3 (ACOG Committee Opinion No.
743; USPSTF, 2017). In addition, accurate identification of risk
could allow for escalation to a higher level of care facility for
delivery. However, there is still a lot of room for improvement with
respect to PE screening. The genome, transcriptome, proteome,
and metabolome have all been interrogated and have generated
some promising data4–9. However, currently there are no omics-
based biomarkers available for clinical use. Furthermore, all the
current screening methodologies focus on a relatively small
number of maternal characteristics, and usually just one time
point at early pregnancy that remains the same over the course of
gestation10. Considering the number of prenatal visits that occur
over a well-defined time range, there remains an unmet need for
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longitudinal PE assessment at each encounter that accounts for
changes in clinical measurements within an individual’s char-
acteristics throughout pregnancy. Further, new onset preeclamp-
sia can occur postpartum11 and remains a common reason for
postpartum readmission12 highlighting a need for ongoing risk
assessment intrapartum and in the early postpartum period. With
PE rates rising along with maternal mortality in the U.S13., a more
robust approach that can predict antenatal, intrapartum, and
postpartum PE is still very much needed.
To the best of our knowledge, large-scale EMR data have not

been systematically mined to identify novel features associated
with PE risk and to model these data using machine learning
approaches to establish whether this wealth of longitudinal, high-
dimensional patient-level data contained in EMRs can improve PE
risk prediction. The increasing accessibility of large-scale EMR data
integrates laboratory-based molecular and biochemical tests,
disease diagnoses, procedures, and prescriptions, along with
outcomes during the pregnancy journey. Further, abstracting
patient journey information from these records, normalizing the
data across systems, reconstructing pregnancy journeys, and
modeling these journeys using state-of the-art data analytic
approaches that can account for dynamic state changes provides
for the potential to better model PE risk through the course of
pregnancy, compared to what is achieved in today’s standard
of care.
Here we build predictive models from digitally reconstructed

pregnancy journeys derived from the EMR data from the Mount
Sinai Health System (MSHS) in New York City, among the largest
and most diverse health systems in the U.S., to assess the risk of PE
across 17 time points throughout the antepartum, as well as
intrapartum and postpartum periods of pregnancy. Appropriately
curated pregnancy journeys derived from EMR data provide a
more expansive, feature-rich context in which to study the
pathophysiology of PE towards constructing more predictive
models to identify patients at risk for PE. After identifying 83,954
patients with pregnancies represented in the MSHS EMR, we
reconstructed the full longitudinal health course through these
pregnancies (referred to as pregnancy journeys) using a preg-
nancy journey construction algorithm resulting in the identifica-
tion of 80,021 patients in which 108,557 complete pregnancy
journeys were captured by the EMR. We then developed a digital
PE phenotyping rules-based algorithm based on clinical criteria
established by the American College of Obstetricians and
Gynecologists (ACOG)14 to identify patients diagnosed with PE
at different periods of their pregnancy. With complete pregnancy
journey information and the PE diagnosis labels, we constructed
predictive models at 19 different time points across the three
major pregnancy time periods (ante-, intra-, and postpartum) by
applying state-of-the-art statistical and machine learning methods
to data collected for patients throughout their pregnancy journey.
We validated the predictive models we trained using data from
one hospital within the MSHS, and another independent dataset
derived from other hospitals within the MSHS. Our PE risk
assessment model could be applied in clinical practice by
extracting the relevant input features for the model from the
patients’ electronic medical records and running the model on
those data. Furthermore, using different approaches to interpret
predictions, we reveal the connections between clinical features
and PE risk to help understand the potential research areas for
exploring pathophysiology of PE.

RESULTS
Reconstructing pregnancy journeys from electronic medical
record data
One of the limitations of current-day EMR systems in widespread
use is that they do not naturally capture and represent patient

journeys through specific episodes through a patient’s health
course. EMR systems are transactional, automating the capturing
of a patient visit and recording of the clinical measures, labs,
procedures, and prescriptions generated on a patient over the
course of their visit. Most EMRs in widespread use are not set up to
provide a longitudinal view of a patient along a particular health
course journey such as pregnancy with all the corresponding data
generated on the patient over that journey. Thus, we developed a
pregnancy journey construction algorithm to identify 83,954
patients with 114,312 pregnancies represented in the MSHS EMR
systems and to reconstruct 108,557 full pregnancy journeys of
80,021 patients between 2002 and 2019 (see Methods section).

Patient characteristics across a training and two independent
test datasets
We retrieved all relevant clinical characteristics on the patients in
this dataset, including demographics, diagnoses, drug prescrip-
tions, procedures, vital signs, and lab values (Fig. 1a). In total we
captured 3230, 4136, and 5391 clinical features for ante-, intra-
and postpartum, respectively, represented in the EMR on these
patients and 46,725,028 data points overall, providing among the
most comprehensive datasets available in the context of the
pregnancy journey, to take a more data-driven approach to
evaluating PE risk. Women delivered at one of two main inpatient
facilities, Mount Sinai Hospital (MSH) and Mount Sinai West (MSW).
We split patient journeys collected from MSH into a training set (N
= 60,879) and a test set (N= 38,421) irrespective of the timing,
and we used MSW (N= 9257) from a different geographic region
in NYC as a second test set.
To identify patients diagnosed with PE during the course of

their pregnancy from these datasets, we developed and applied a
rule-based digital phenotyping algorithm (Fig. 1b) to identify 5663
(9.3%) PE patients from the 60,879 patients in the training dataset.
We further identified 2064 (5.4%) PE patients from the MSH test
dataset and 398 (4.3%) PE patients from the MSW test dataset,
respectively. The PE prevalence observed across the various
datasets is consistent with prior published literature: 2–8% in the
general population15.
Patient demographics and characteristics collected 8months

prior to pregnancy as baseline were significantly different
between the MSH training set, the MSH test set, and the MSW
test set, indicating differences in regional geographic and
socioeconomic status, and shifting demographics over time. More
detailed summaries of the characteristics of these different
datasets are provided in Table 1, where we note statistically
significant differences with respect to Medicaid rates, population
composition, and average pregnancy ages, among several other
features, between the different datasets.

Performance of predictive model across pregnancy in training
set
In order to train predictive models for PE along the pregnancy
journey, we divided the journey up into 19 time points that
included dividing the antepartum period into 17 time points
following a standard of care protocol for prenatal office visits at
the participating site: 5 monthly visits spanning weeks 4–20, 7
biweekly visits spanning weeks 22–34, and 5 weekly visits
spanning weeks 35–39;16,17 followed by intrapartum and post-
partum periods as two independent time points with respect to
the pathophysiology of PE (Fig. 1c). Given the large number of
clinical features available from the EMR database for our datasets,
for each of the 19 time points we employed several feature
selection methods to choose features robustly that were
consistently significantly different between patients diagnosed
with PE and those without PE. Several features demonstrated
consistently changing effects throughout the pregnancy (Fig. 2a),
reinforcing the importance of partitioning the antepartum period
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into more granular time points to better isolate signals that may
associate with the clinical manifestation of PE. For the monthly
models (spanning weeks 4–20), our feature selection process
identified between 19 and 36 unique features depending on the
month; between 34 and 40 unique features for the biweekly
models (weeks 22–34); and 35–40 unique features for the weekly
models (weeks 35–39). We also selected 68 and 48 unique
features, respectively, for the intrapartum and postpartum periods.

All the selected unique features across the 19 time points are
summarized in Supplementary Table 1–19. For each of the 19 time
points, we trained gradient boosting models and tuned the
parameters of these models using cross-subject validation. The
cross-subject validation performance for each time point is
summarized according to the area under the receiver operating
characteristic curve (Fig. 2b; AUC), the positive predictive value
(Fig. 2c; PPV), the negative predictive value (Fig. 2e; NPV) and

Fig. 1 Overview of study design and model development. a The workflow of the study outlines the cohort construction, patient
characteristics extraction, dataset splitting into training and testing datasets (including subdivision into antepartum, intrapartum, and
postpartum), feature engineering, feature selection, machine learning models (cross-subject validation) and final evaluation. b The proposed
eMerge algorithm to identify preeclampsia (PE) patients to construct the binary prediction problem. c The schematic of 19 timeline models
including: monthly models, weeks 4–20; biweekly models, weeks 22–34; weekly models, weeks 35–39; intrapartum and postpartum model.
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specificity (Fig. 2e; SPE). These performance measures assess the
diagnostic ability of the models (AUC) as well as the sensitivity and
specificity of the models taking into account the population
prevalence of the disease (PPV and NPV). For predictive
performance comparison, we also built the ACOG criteria-based
model based on risk factors constructed from patient character-
istics and medical history recommended by ACOG14, and
computed its AUC using risk score (see Methods).
As the density of data increased across the antepartum period,

the median AUC score increased from 0.69 (interquartile (first
quartile-third quartile) [IQ]: 0.68–0.70) at week 4 where most of
clinical attributes obtained from the patient’s historical informa-
tion, to 0.92 (IQ: 0.89–0.92) at week 37, which captures nearly all
feature values through the pregnancy course. We calculated a
median AUC score of 0.82 (IQ: 0.82–0.83) for intrapartum and 0.89
(IQ: 0.89–0.90) for postpartum in the cross-subject validation
analysis. In comparison, the ACOG criteria-based model for
antepartum achieved a median AUC score of 0.62 (IQ: 0.62–0.63)
with high-risk factors and 0.67 (IQ: 0.67–0.68) using all risk factors.
We also compared our model PPVs to existing PE risk assessments
used as part of standard of care (i.e., population prevalence during
the same gestational week) using our models. For example, the

PPV for our model at week 4 was 0.04 (IQ: 0.03–0.04) compared to
a prevalence of 0.02 (a greater than 2-fold increase). Similarly, the
PPV for our model at week 37 was 0.094 (IQ: 0.089–0.104)
compared to a prevalence of 0.015 (a greater than 8-fold increase).
Complete performance summaries across all models are provided
at Table 20 and Supplementary Fig. 4.

Refining key features during the pregnancy journey
We identified 78, 68, and 48 uniquely influential clinical features
across the entire antepartum, intrapartum, and postpartum
periods, respectively (Fig. 3a). Twenty-one features were signifi-
cant predictors in all three periods, and 42, 30, and 15 features,
respectively, were specific to antepartum, intrapartum, and
postpartum. Among the 21 common features, which were
enriched for patient demographics and baseline characteristics,
we identified 48% features supported in the literature as
associating with PE risk, including systolic blood pressure
(SBP)14,18, diastolic blood pressure (DBP)19, weight18, maternal
age20, hemoglobin21, white blood cell count22, gestational
hypertension14, PE history23, chronic hypertension22 and head-
ache (including migraine)24 (Supplementary Tables 1–19). Features
specific to antepartum were enriched with CBC findings that

Table 1. Characteristics of patients in MSH training dataset, and MSH and MSW test dataset.

Cohorts Mount Sinai Hospital (MSH)
training set

Mount Sinai Hospital (MSH)
test set

Mount Sinai West/UW/BI/
SL test set

P-value Test

Features at Baseline 60879 38421 9257

Age at pregnancy, median [Q1,Q3] 31.0 [26.0,35.0] 31.0 [27.0,35.0] 33.0 [29.0,36.0] <0.001 Kruskal–Wallis

Weight (kg), median [Q1,Q3] 63.5 [56.0,74.4] 63.5 [56.2,74.4] 63.0 [56.2,72.6] 0.084 Kruskal–Wallis

Height (cm), median [Q1,Q3] 162.6 [157.5,167.6] 162.6 [157.5,167.6] 163.8 [160.0,168.9] <0.001 Kruskal–Wallis

BMI (kg/m2), median [Q1,Q3] 23.8 [21.1,28.0] 24.0 [21.2,28.1] 23.2 [20.9,26.6] <0.001 Kruskal–Wallis

SBP (mmHg), median [Q1,Q3] 110.0 [104.0,120.0] 112.0 [106.0,120.0] 112.5 [108.0,120.0] <0.001 Kruskal–Wallis

DBP (mmHg), median [Q1,Q3] 67.5 [60.0,72.0] 69.0 [62.0,74.0] 70.0 [66.0,76.0] <0.001 Kruskal–Wallis

Race, n (%)

African American/Black 8336 (13.7) 3246 (8.4) 1399 (15.1) <0.001 Chi-squared

Asian 4623 (7.6) 2754 (7.2) 1123 (12.1)

Caucasian/White 32662 (53.7) 25686 (66.9) 4622 (49.9)

Hispanic/Latino 9928 (16.3) 3253 (8.5) 280 (3.0)

Multi-racial 589 (1.0) 208 (0.5) 110 (1.2)

Native American 227 (0.4) 111 (0.3) 73 (0.8)

Other 4112 (6.8) 2386 (6.2) 1090 (11.8)

Unknown 402 (0.7) 777 (2.0) 560 (6.0)

Medicaid, n (%) 22773 (37.4) 9956 (25.9) 1362 (14.7) <0.001 Chi-squared

Miscarriage history, n (%) 1167 (1.9) 331 (0.9) 299 (3.2) <0.001 Chi-squared

PE history, n (%) 350 (0.6) 140 (0.4) 28 (0.3) <0.001 Chi-squared

Smoking history, n (%) 5876 (9.7) 2135 (5.6) 544 (5.9) <0.001 Chi-squared

Alcohol use history, n (%) 8941 (14.7) 3902 (10.2) 546 (5.9) <0.001 Chi-squared

hospital, n (%)

Mount Sinai Hospital—Main
Hospital

60879 (100.0) 38421 (100.0) <0.001 Chi-squared

Mount Sinai West/UW/BI/SL 9257 (100.0)

PE type, n (%)

Antepartum 1213 (2.0) 437 (1.1) 140 (1.5) <0.001 Chi-squared

Intrapartum 3787 (6.2) 1322 (3.4) 206 (2.2)

None 55216 (90.7) 36357 (94.6) 8859 (95.7)

Postpartum 663 (1.1) 305 (0.8) 52 (0.6)

Pregnancy journey length (days),
median [Q1,Q3]

273 [266,280] 275 [267,281] 277 [270,282] <0.001 Kruskal–Wallis
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suggest inflammation and/or infection, such as elevated neutro-
phil, monocyte, eosinophil, and lymphocyte levels. Intrapartum-
specific factors included pregnancy complications such as
malposition, malpresentation, premature rupture of membranes
(PROM), and sodium chloride (salt) use. Predictors in the
postpartum period included many indications relating to follow-
up care, such as immunizations, screening for infectious diseases,
OB-related trauma, and ibuprofen usage (Fig. 3b).
To better visualize the contributions of the most predictive

features across the pregnancy time periods, we further reduced
the number of features during intrapartum and postpartum
periods to 30 and 24 unique features, respectively, while
maintaining the same level of performance (see Methods section).
Associations between each clinical feature and PE were visualized
by each time period (Fig. 3b), confirming known relationships such
as Caucasian and Asian patients being less likely to develop PE,

while African American and Hispanic patients were more prone to
PE, especially during the intrapartum period (OR:1.25 [95% CI,
1.09–1.43]). Additionally, we identified that patients covered by
Medicaid insurance were more likely to develop PE25,26. Addition-
ally, we have found features that have not been reported before,
such as our identification of pulse rate as a risk factor that was
consistently associated with PE in each time period.
To further characterize features we identified as predictive for

PE risk, we constructed an interaction network of predictive
clinical features and PE across the 17 time points within
the antepartum period (Fig. 3c). From the resulting network, we
identified clusters of unique lab test features (N= 33), diagnoses
(N= 28), vital signs (N= 8), demographics (N= 7), and drug
prescriptions (N= 2). We confirmed well-known risk factors for
antepartum PE14 (Supplementary Tables 1–17). Moreover, we
identified PE biomarkers previously reported in the literature,

Fig. 2 Model performance at different time points. a Features indicate different dynamical signals across the gestational weeks based on
different adjusted odds ratio (OR). b Area under receiver operating characteristic curve (AUC) score for each time point. c Positive predictive
value (PPV), along with preeclampsia risk in the population, at each time point. d Negative predictive value (NPV) at each time point.
e Specificity (SPE) at each time point. The variation estimates were derived from 10-folds cross-subject validation from training set. For the box
plots shown in b–d, the median, interquartile (1st and 3rd) range, and minimum and maximum values, are depicted by the center line, the
bounds of the boxes, and the whiskers respectively.
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including fibrinogen27, mean platelet volume (MPV)28, mean
corpuscular volume (MCV)29, red cell distribution width29, fetal
fibronectin30, and lactate dehydrogenase (LDH)31. Finally, we
identified potential novel features that have not been previously

reported as associated with PE. For example, median value of
varicella zoster virus antibody (IgG) titer is lower in PE patients
compared to non-PE patients from 12 to 28 gestational weeks of
pregnancy.

Fig. 3 Networks of feature associations through pregnancy. a Venn diagram to show common features shared with three pregnancy
periods, and specific features to each period. b The network to display the associations of selected clinical features with each pregnancy
period. c The network for the 17 time points in the antepartum. The two networks were constructed by connecting predictive features with
respective PE time point. The squares signify different time points of PE, and the round nodes represent the identified predictive features with
their sizes proportional to the feature importance. The red edges indicate risk associations (adjusted OR > 1) while the blue edges indicate
protective associations (adjusted OR < 1). The edge width reflects the significance of predictive features. Different feature categories are
represented with different colors and also laid out together. The networks were visualized using Cytoscape 3.7.2.
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Assessing the dynamic progression of PE associated risk
features
To better characterize the dynamic progression of PE features, we
generated moving average plots for the significant risk factors,
revealing interesting patterns of association even among
well-known risk factors. For example, while abnormally high SBP
is a well-known risk factor used as a diagnostic marker for PE18, by
examining longitudinal SBP measures across >100,000 pregnancy
journeys, the data show that patients who developed PE in the
antepartum period generally had elevated SBP measurements
compared to patients without PE, even though the elevated
measures fall within a normal range and would not be classified as
abnormal during a clinical office visit (Fig. 4a). The average SBP for
PE patients in the antepartum time period was only
~120mmHg32, but then consistently through the antepartum
period 10mmHg (one standard deviation of mean from control)
higher compared to the control cohort, an important predictive
signal for PE picked in nearly all of the models. DBP showed a
similar pattern, albeit at a reduced signal strength compared to
SBP18. Similarly, while protein in urine (U-Protein) is also a well-
established diagnostic marker for PE, our data show that the
presence of protein in urine even in trace amounts, is a significant
predictor for antepartum PE (Fig. 4b). As with SBP, the trace
urinary protein levels were supported by our models as a
significant predictive feature of PE, even though on their own,
recorded at a single visit rather than a longitudinal pattern, trace
levels would not be deemed as relevant in current clinical practice.
In addition to the physiologic and urinary findings, our

antepartum models also identified and quantified several

biomarkers scored in routine laboratory tests, including fibrino-
gen, blood uric acid, and mean platelet volume (Fig. 3c). Each of
these biomarkers exhibited increasing effect sizes in PE cases
compared to controls, as measured by adjusted odds ratio over
the course of pregnancy journey. These results suggest the
corresponding clinical factors predict a greater risk of antepartum
PE onset during the later periods of pregnancy. As an example,
fibrinogen has been previously associated with PE (especially early
onset)33. By examining the moving average of fibrinogen along
the course of the antepartum time period, we found that the
levels of fibrinogen exhibited a moderate increase at 16 weeks in
patients who later developed PE (Fig. 4c), suggesting that
fibrinogen could be closely monitored over time to enhance the
prediction of PE. Along with enhanced utility of known PE risk
factors by examining signals longitudinally, mean corpuscular
hemoglobin (HGB) was found to be a novel predictor of PE, with
slightly lower values observed throughout the antepartum time
period in patients who later developed PE (Fig. 4d). Taken
together, our PE prediction models were able to recover known
and novel clinical factors that enhanced power to predict PE.

Intrapartum features prioritized by importance based on
SHAP values
We utilized the framework, SHAP values34,35, to prioritize the
feature contributions to PE predictions by averaging feature
importance estimates (Fig. 5a). Median SBP measured in
antepartum was the most predictive feature for PE in the
intrapartum period followed by Caucasian race and oxytocin

Fig. 4 Feature inspection for antepartum based on moving average. a 28 days moving average of systolic blood pressure for PE and control
patients. The dashed line shows the normal range of systolic blood pressure. b Distribution of urine protein for PE and control patients.
c 28 days moving average of fibrinogen for PE and control patients. The dashed line represents the reference ranges for fibrinogen. d 28 days
moving average of mean corpuscular hemoglobin (HGB) for PE and control patients. The dashed line represents the normal range of mean
corpuscular hemoglobin. In the moving average plots, the shaded areas indicate the standard deviation and solid lines represent the average
value across the pregnancy.
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administration. We also calculated the average contribution of
each clinical category for PE predictions (Fig. 5b). We found
medications provided 40.76% predictive power, demographics
22.82%, vital sign contributing 17.40% followed by diagnoses
(13.24%), labs (5.64%) and procedures (0.14%). To uncover the
relationship between PE risk and changes within a specific feature
range, we explored dependence plots which show relative risk
(RR) against feature values. To illustrate this point, we provided a
representative selection (Fig. 5c), demonstrating PE relative risk in
terms of antepartum maximum SBP values and the interaction
with African American race. We observed that maximum SBP
antepartum tended to become a risk factor after 130mmHg, and
the relative risk values changed rapidly around 130mmHg.

Postpartum features reveal novel medication effects related
to racial disparities
In postpartum period, ibuprofen was the best predictor for PE risk,
followed by maximum and median SBP measured during
postpartum (Fig. 6a). Both Caucasian race and OB-related trauma
showed protective benefit for PE risk reduction. OB-related trauma
is common among vaginal deliveries, so this feature likely reflects
the protective effect of a vaginal delivery relative to a Cesarean
delivery. As a category, medications provided the highest average
predictive contribution (46.83%), followed by diagnoses (15.39%),

demographics (14.33%), lab tests (10.30%), and procedures
(0.08%) (Fig. 6b).
Among predictive features during the postpartum period, we

observed that maximum SBP measured in postpartum had a clear
effect on the risk of PE (Fig. 6c). The risk of PE increased almost
linearly as the elevation of SBP until around 150mmHg where
relative risk steeply increased. Evidently, maximum SBP post-
partum would become a risk factor when it exceeded 130mmHg.
Among the patients with maximum SBP ranging from 130mmHg
to 150mmHg, African American patients were at higher odds to
develop PE compared to other races. Among the 18,214
pregnancy journeys in this range, 2978 were African American
patients. Within African American race group, the ratio of patients
with PE risk (RR ≥ 1) to those without PE risk (RR < 1) was 12.23
while the ratio within other race groups was 3.63. Interestingly, the
protective effect of ibuprofen appeared limited to this time period
and may increase risk when used prior to pregnancy (Fig. 6d).

PE predictive model validated in two independent datasets at
Mount Sinai Health System
We tested the external validity of our predictive models using two
independent datasets, a withheld test set from Mount Sinai
Hospital (MSH) and all data collected from Mount Sinai West
(MSW). Demographic and clinical characteristics were reported in
Table 1 and PE prevalence for each period is listed in

Fig. 5 Feature inspection for intrapartum based on SHAP value. a SHAP summary plot for top 20 clinical features for PE prediction shows
the SHAP values for the most important features from gradient boosting model in the training data. Features in the summary plot (Y-axis) are
ordered by the mean absolute SHAP values (in the parenthesis after each feature name), which represents the importance of the feature in
driving the intrapartum PE prediction. Values of the feature for each patient are colored by their relative value with red indicating high value
and blue indicating low value. Positive SHAP values indicate increased risks for intrapartum PE and negative values indicate protective effects
to intrapartum PE. b The average feature group contribution calculated from averaging mean absolute SHAP values for each feature set. c The
dependence plot with maximum SBP measured in antepartum versus PE relative risk, along with the interaction of African American race. The
plot shows how different values of the feature can affect relative risks and ultimately impact classifier decision. Data points are colored by the
African American race. The solid line represents the mean of SHAP values.
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Supplementary Table 21. We evaluated performance in these two
datasets using four predictive performance metrics, AUC, PPV
(positive predictive value), NPV (negative predictive value), and
specificity (SPE) (Fig. 7). Other detailed metrics are reported in
Supplementary Tables 22–23.
For the MSH test set, we achieved an AUC of 0.66 (IQ: 0.65–0.67)

at week 4, which rose continuously as more clinical information
became available and reached 0.87 (IQ: 0.86–0.87) at week 37.
Consistent with this trend, our intrapartum and postpartum
models had AUC scores of 0.83 (IQ: 0.83–0.84) and 0.84 (IQ:
0.84–0.85), respectively. In comparison, we also assessed predic-
tion performance from ACOG criteria-based model for antepar-
tum, AUC score was 0.58 (IQ: 0.58–0.59) using high-risk factors,
and AUC score was 0.66 (IQ: 0.65–0.67) using all risk factors. All our

models had much higher precision than case prevalence. The
lowest PPV we reported was at our first time point, week 4,
where a PPV of 0.033 (IQ: 0.032–0.034) was observed and case
prevalence was 0.013. By week 37, we observed a PPV of 0.16 (IQ:
0.12–0.15) and case prevalence was 0.007. For intrapartum
(prevalence= 0.035) and postpartum (prevalence= 0.008), the
PPV was 0.19 (IQ: 0.18–0.20) and 0.08 (IQ: 0.07–0.08), respectively.
The median NPV scores for all the periods were at or above 0.98
(Supplementary Table 22). The SPE within antepartum was 0.82
(IQ: 0.81–0.83) at week 4 and boosted to 0.92 (IQ: 0.91–0.93) at
week 37. We estimated SPE was 0.92 (IQ: 0.92–0.93) for
intrapartum and 0.95 (IQ: 0.94–0.95) for postpartum.
Performance was similar in the MSW test set. AUC score was

0.68 (IQ: 0.66–0.68) at week 4 and increased to 0.82 (IQ: 0.82–0.83)

fr
i

Fig. 6 Feature inspection for postpartum based on SHAP value. a SHAP summary plot for top 20 features. Features in the summary plot (Y-
axis) are ordered by the mean absolute SHAP values (in the parenthesis after each feature name), representing the importance of the feature
in driving the postpartum PE prediction. Values of the feature for each patient are colored by their relative value with red signifying high value
and blue presenting low value. Positive SHAP values indicate increased risks for postpartum PE and negative values indicate protective effects
to postpartum PE. b The average feature category contribution. c The dependence plot of PE relative risk in terms of maximum SBP measured
in postpartum. d The dependence plot of PE relative risk versus ibuprofen. The SHAP dependence plots indicate how different values of the
features can affect relative risks and ultimately impact classifier decision for SBP and ibuprofen stratified by African American race. The solid
line shows the mean of SHAP values.
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at week 37, compared to 0.58 (IQ: 0.56–0.59) by high-risk factors,
and 0.64 (IQ: 0.62–0.66) with all risk factors by the ACOG criteria-
based model. Intrapartum and postpartum had AUC scores of 0.74
(IQ: 0.73–0.74) and 0.90 (IQ: 0.88–0.90). PPVs ranged from 0.034
(IQ: 0.033–0.035) at week 4 to 0.086 (IQ: 0.083–0.091) at week 37
compared to existing PE risk (0.016 at week 4 and 0.011 at week
37). All NPV scores surpassed 0.98 on median for every model
throughout pregnancy. More details can be found in Table 23 and
Supplementary Fig. 5.

Comparison with published studies
Several previous studies have been developed for the early
prediction of PE using either a logistic regression model or a
competing risk model by incorporating maternal characteristics,
medical history, biochemical markers, and Doppler ultrasound
imaging36–42. However, these models only included predictors
collected before a certain gestational week (ranging from 11 to
24 weeks across various studies), without taking into account that
the predictors (especially vitals and laboratory results) might
fluctuate across the pregnancy journey. Our proposed predictive
models, on the other hand, could assess PE risk at each protocol
visit through incorporating the dynamic changes of clinical
manifestations during the pregnancy. In addition, some of the
risk factors used in the existing models, such as biochemical
markers, could not be accessed routinely during the pregnancy
visits. To better compare our model with other existing models,
we listed the prediction performance from the training dataset of
the seven existing models as reported in the manuscripts, along
with when the predictors were collected and how the perfor-
mance was evaluated (Supplementary Table 24). In addition, we
also listed the performance of the ACOG model with all risk factors
evaluated using MSH training data and estimated the perfor-
mance of our model at gestational week 16 to match other
existing models, and at gestational week 34 to predict PE later on
in the pregnancy (Supplementary Table 24). Our model achieved

AUC score 0.75 (IQ: 0.74–0.76) and 0.85 (IQ: 0.84–0.91) for
gestational weeks 16 and 34, respectively.
Moreover, since some of the known risk factors were not

selected by our algorithms, we also performed sensitivity analyses
using features from the ACOG criteria in addition to our selected
features and to assess potential gains in performance compared
to our models as well as ACOG model. The AUC of the models
(ACOG and our selected features) had no significant difference
from our models (t-test P= 0.99, P= 0.84, and P= 0.77 for MSH
training set, MSH and MSW test sets, respectively) (Supplementary
Fig. 1). Further, we performed analyses using well-established
features (preexisting hypertension, history of preeclampsia in
previous pregnancy, maternal age, number of babies in the
current pregnancy, race/ethnicity, diabetes type I/II, autoimmune
disorders, and height) in addition to our selected features and
assessed the performance gain compared to our models as well as
the model using the well-established features alone. There was no
significant difference between our models and the models
containing well-established risk factors, with and without and
our selected features (t-test P= 0.98, P= 0.72, and P= 0.35 for
MSH training set, MSH and MSW test sets, respectively)
(Supplementary Fig. 2).

DISCUSSION
This study represents the first data-driven effort to predict PE
events across the entire pregnancy journey (antepartum, intra-
partum, and postpartum) by comprehensively integrating all
clinical characteristics extracted from large-scale EMR data. Our
predictive models can identify PE at different time points in
accordance with the OB visit protocol, significantly outperforming
the ACOG criteria-based model with commonly assessed risk
factors. We have tested our developed framework in an
independent dataset from a different geographic region and
observed comparable performance, demonstrating portability of
our PE predictive system to other new facilities.

Fig. 7 Model validation on two independent datasets in MSHS. a Area under receiver operating characteristic curve (AUC) score for each
time point. b Positive predictive value (PPV), along with preeclampsia risk in the population, at each time point. c Negative predictive value
(NPV) at each time point. d Specificity (SPE) at each time point. Blue boxes indicate the validation in MSH testing set and yellow boxes
represent the validation in MSW dataset. The median, interquartile (1st and 3rd) range, and minimum and maximum values, are depicted by
the center line, the bounds of the boxes, and the whiskers respectively.
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We captured important features contributing to the PE
prediction across pregnancy time points. To provide maximum
interpretability to physicians, we calculated moving averages
across time points for key features, as well as SHAP values to
indicate relative importance of individual features to overall risk
prediction. We identified features common across all three
pregnancy periods and features unique to each period. Specifi-
cally, other than common features, CBC-related characteristics
dominated in antepartum; pregnancy complications associated
with intrapartum; follow-up care impacted postpartum.
Some of the findings give further credence to the underlying

mechanisms associated with preeclampsia, especially that of
dysregulated inflammatory processes43. We found several labora-
tory markers that are complementary predictive factors of
preeclampsia in our model and are routine available in the
antenatal period. Elevated neutrophil, monocyte, eosinophil, and
lymphocyte levels were noted in the antepartum time frame.
Fibrinogen, aside from being an important molecule in coagula-
tion, also has an important role in inflammation and serves as an
acute-phase protein44. Additionally, the temporal relationship of
these markers allows for a more specific and nuanced prediction
of preeclampsia at multiple time points in pregnancy. Previous
prediction models have focused on risk factors at a single time
point in pregnancy37,38,40,42,45. In contrast, our model incorporates
risk factors over time and allows for refined prediction as the
pregnancy journey progresses and postpartum. For illustration, we
compared our model at gestational week 16 to other models in
the literature, as well as our model at gestational week 34
(Supplementary Table 24). The performance of our model at
gestational week 16 was very similar to most of the predictive
models for early screening of PE, which included variables that
could be obtained during routine visits, such as maternal
characteristics, medical history, and laboratory results37,38,40,42.
While Odibo et al. performed comparably to our week 16 model,
in addition to the variables from routine visits, their model also
included Doppler ultrasound and biochemical markers39. Our
model at gestational week 34 had the best performance among all
the models listed. Although the competing risk model from
Wright et al. and the logistic regression from Yu et al. performed
similarly, these models also required Doppler ultrasound result
and/or biochemical markers, which is usually challenging to access
using EMR data from routine pregnancy visits36,41.
Of interest, ibuprofen was noted to show protective association

in the postpartum preeclampsia model, which further the findings
from a double-masked randomized trial that ibuprofen did not
lengthen the duration of severe-range hypertension in women
with PE with severe features46,47.
Other interesting findings included several insights regarding

blood pressure measurements. One advantage to the algorithm is
that it does not require any special BP measurements, beyond
those commonly performed in the office and recorded in the
medical record. Rather than the specific BP measurement, it is the
trajectory that consequent signal that drives the algorithm. SBP
was a more powerful driver vs DBP, which has been noted
previously48. However, in our study, we were able to confirm the
importance of SPB > 130 mmHg as an important threshold for
concern. This finding was readily apparent and lends further
support to the those who consider the 140/90 threshold to be too
high48, especially in light of the new AHA recommendations49. The
association with elevated SBPs and African American race,
particularly in the postpartum period, also affirms recent literature
that suggests a different BP pattern in African American women
following delivery, which warrants further research and assess-
ment. Medicaid has been picked as a significant feature to PE,
indicating that these patients may be at increased risk because of
limited access to healthcare or other barriers due to low
socioeconomic status.

While features associated with inflammatory processes and BP
were anticipated, there were other features that could be
potentially novel and merits further investigation. The median
value of varicella zoster virus antibody (IgG) titer was significantly
lower in PE patients compared to non-PE patients from 12 to 28
gestational weeks of pregnancy. This association suggests that
higher IgG against varicella zoster, developed from vaccination
prior to their pregnancy, or an underlying mechanism, may
indicate protective association with PE50.
Some of the risk factors from ACOG guideline, such as diabetes,

systemic lupus and other autoimmune disorders were not
selected for our models, which might be due to (1) ICD diagnosis
code system is not perfect to identify patients with the conditions;
however, this approach has limitations in capturing all the patients
of interest (more details below); (2) we did not consider the
severity of the conditions in the model. That is, from our data, we
would only know that a patient had been diagnosed with
diabetes, but we cannot know whether this patient is a relatively ill
or healthy patient (e.g. through different adherence to medica-
tions and dietary recommendations).
Our study had several limitations. As our clinical data was

extracted from MSH, which is close to other medical centers in the
area, patients may have received prenatal care at other nearby
hospitals or clinics but then chose to deliver at MSH, resulting in
the loss of valuable information from our EMR system. Moreover,
patients might not come for follow-up care after discharge. To
tackle this issue, we designed sparsity filters to ignore some
journeys only with minimal available features, e.g. journeys only
with demographics. Nonetheless, even patients receiving care at a
single facility will often have missing values. Here, since the
gradient boosted tree algorithm can accommodate the missing
values, we chose not to explicitly impute them, as this better
reflects clinical practice where some patient information might be
not available. Additionally, our methodology used ICD9/10 codes
to identify maternal comorbidities and excluded detailed physi-
cian notes. As a result, we may have excluded some “over the
counter” medications, comorbidities, and/or diagnoses. This is
likely due to the intended function of ICD codes being for billing,
not diagnostic purposes51. Specifically, previous studies have
shown that using ICD codes alone to identify preeclampsia
patients performed poorly when compared to the gold standard
of chart review52,53. Indeed, to identify as many PE cases as
possible, ICD codes should be combined with EMR records (such
as vitals and laboratory results). Being aware of these limitations,
we took the more comprehensive digital phenotyping approach
to better capture PE cases.
Extensive research has identified three important biomarkers for

preeclampsia54–56, mean arterial pressure (MAP), uterine artery
pulsatility index (UtA-PI), and serum placental growth factor (PlGF).
Due to data access restrictions on identifiable data such as
ultrasounds, our PE prediction system was developed solely based
on structured EMR data. However, we achieved similar or even
better prediction performance compared to the models incorpor-
ating these biomarkers57. Our methodology allows for the
incorporation of biomarkers into our current PE prediction system
that would be expected to generate more robust performance.
Similarly, certain ‘Omic’ data has shown promise for identifying
PE4–9, but this type of data is not collected routinely in a clinical
setting. Although further studies are needed to incorporate known
biomarkers as well as ‘omics’ data, some of which are still
investigational while others such as PlGF are already in clinical use,
our algorithm—based on EHR data alone—has significant
potential implications for clinical care and management.
Our results showed both common features shared among all

periods, and unique features specific to each pregnancy period
exist, suggesting significant pathophysiologic differences in each
pregnancy period in terms of risk for PE. We have confirmed
previously known risks to PE, and also uncovered potentially novel
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connections between clinical features and PE, some of which are
supported by other clinical and experimental data. Furthermore,
we have validated our models with similar predictive performance
on two independent test datasets with population diversity.
The results open the door for optimizing monitoring tools to
mitigate risks and for individualizing assessment based on patient
risk profiles. In addition, this paper provides the most complete
assessment of vital sign patterns and trajectories in patients with
and without preeclampsia. We have demonstrated that by
harnessing the power of data science, we can enhance predictive
PE algorithms throughout the pregnancy journey. Hopefully, with
continued research, better screening performance based on
precision monitoring strategies, will ultimately lead to preemptive
clinical strategies and improved perinatal outcomes.

METHODS
The aim of the study was to develop and validate a prediction tool to
screen for and monitor patients at risk for PE using clinical information
from 108,557 pregnancies at MSHS in New York City, a large health system
with a highly diverse population. We built and implemented a digital
phenotype for PE based on ACOG recommendations14 to incorporate
multiple diagnostic tests and criteria. We performed data processing,
model training and validation, and results interpretation for predicting PE
risk and interpreting associations between clinical features and PE.

Data source and pregnancy journey construction
We utilized de-identified EMR from MSHS. By March 2019, the system
contains records for >9 million unique patients since 2002. The Mount
Sinai EMR covers heterogeneous clinical information including patient
characteristics, diagnosis, procedure, medications, vital signs, and lab tests
for visits. We selected patients from Mount Sinai Hospital (MSH) and Mount
Sinai West (MSW, we additionally added Mount Sinai Upper West, Mount
Sinai St. Luke and Mount Sinai Beth Israel together) who are biologically
female between age 12 and 50 with either: (A) diagnosed with labor and
delivery related International Classification of Disease 9th or 10th billing
codes; (B) has vaginal or cesarean section delivery Current Procedural
Terminology 4th billing codes; or (C) admission records to labor and
delivery facility. We identified 114,757 standalone delivery events for
88,907 unique patients, with 1.29 deliveries per patient. We extracted
gestational week mentioned in the admission records to labor and delivery
facility, admit reason for inpatient and outpatient visits, and ICD9/10
diagnosis codes associated with specific gestational weeks. Then, we
calculated the pregnancy date as gestational week report date—7 *
gestational week. We were able to find gestational week records and
calculated the accurate pregnancy dates for 114,312 deliveries (83,954
unique patients) (Fig. 1a), with the average age of 31.06 (std: 6.09) at
pregnancy.
We extracted patient demographics, diagnoses, prescription drugs,

anesthesia-involved procedures, vital signs, and lab tests from MSDW EMR
for patients in the study cohort (Supplementary Table 24). For each
journey, we collected data from as early as 8months before the pregnancy
to as late as 10 weeks past the delivery. This (A) minimizes the influence of
clinical signals associated with previous delivery yet preserves as much
as possible prior-pregnancy information of the patient; and (B) corre-
sponds to the timeline of preeclampsia development, which can happen
as late as 10 weeks postpartum.
The demographic information includes age at the pregnancy, race,

tobacco usage, alcohol usage, recent preeclampsia history, and Medicaid
insurance. For patient who had reported multiple race groups, we assigned
them to all race groups they had reported. We considered the patient
under tobacco or alcohol usage, if they had reported such use during or
before the 10 weeks after delivery.
The original diagnosis records in the MSHS EMR contains 14,688 ICD9/10

codes for the Pregnancy-Delivery (PD) journey cohort. We grouped these
ICD9/10 codes into 279 (of 285) Clinical Classification Software (CCS)
single-level categories58 and 121 reproductive disease categories defined
by our OB/GYN. This helps to reduce dimensionality of heterogeneous
diagnosis features to the granularity level suitable for building machine
models and interpret clinical meaning.
We did not differentiate prescriptions of the same drug with difference

dosage or under different brand names, and common ingredients of the

different drugs may impact development of preeclampsia in the same way.
Therefore, we mapped 8682 unique prescribed drug names to 1618 drug
ingredients concepts registered in the RxNorm, using the RxNav API from
National Library of Medicine [https://rxnav.nlm.nih.gov/APIsOverview.
html].
The PD journey cohort contains 718 unique CPT codes for anesthesia-

involved procedures, which were directly retrieved from the EMR.
We collected vital signs including pulse, systolic blood pressure, diastolic

blood pressure, temperature, respirations, weight, height, O2 saturation,
and pain scores for each journey and unified unit of measurements to
Beats/Min, mmHg, Fahrenheit degree, kilogram, centimeter, percentage,
and 10-point scale respectively. For all but pain scores, we removed vital
values beyond the range of Guinness World Records.
Patients in the PD journey cohort took a total of 603 lab tests. We

normalized the lab names by mapping free text 603 lab names to 348
LOINC codes, using the RELMA software [https://loinc.org/relma/] and
manually validated the mapping results. We unified the unit of
measurements for the same tests to the default unit of the corresponding
LOINC. Out of all labs, 514 (283 LOINC) has numeric values, for which we
unified the unit of measurements. For the 89 lab tests (65 LOINCs) that has
descriptive text values, we unified nominal values and encoded nominal
values to ordinal numbers based on test strip description59 and color
charts (e.g., “negative” -> 1, “trace” -> 2, “small” -> 3, “moderate” -> 4,
“large” -> 5).
This data usage is approved by institutional review board (IRB) of Icahn

School of Medicine at Mount Sinai: IRB-17-01245, who determined that the
research does not involve human subjects and granted a waiver of consent
based on the nature of the project, including the use of previously
collected, de-identified data.

Digital phenotyping for PE
The World Health Organization recommended patients meeting the
following criteria being diagnosed for preeclampsia: (1) Persistent
hypertension and (2) Development of substantial proteinuria60. In Mount
Sinai Hospitals, OB/GYNs used diastolic blood pressure (DBP) of 90mmhg
or systolic blood pressure (SBP) of 140mmhg as the threshold for
hypertension. From ACOG guideline, we added the following clinical
features: platelets counts, creatinine, liver function enzymes (AST/ALT),
proteinuria, and related diseases such as headache, visual disturbances,
pulmonary edema, eclampsia, and seizure (Fig. 1b).
We implemented a diagnosis and rule-based digital phenotyping

algorithm to identify PE patients (Fig. 1b). We first identified 2291 patients
who were diagnosed with PE ICD9/10 codes between the gestational
weeks of 20 and 10 weeks after the delivery and used the first date of the
diagnosis as the PE onset date. Additionally, we have implemented
additional criteria from the ACOG guidelines to capture the undiagnosed
PE cases which were not coded by ICDs (Fig. 1b). We checked if the
patients had repeating high blood pressure (≥140/90mmhg for SBP/DBP
and occurred at least twice) within 3 days, and then checked if they had
ICD9/10 codes and lab test results indicating the development of
proteinuria which happened within 3 days of the first repeating high
blood pressure. We identified 6279 patients who met both criteria to be
classified as PE. We used the first day of high blood pressure as the PE
onset date for these patients. If the patient were not diagnosed with PE
and did not meet the hypertension—proteinuria defined criteria within
pregnancy and until 10 weeks after the delivery, they were defined as the
control group. After examining 2291 patients who were diagnosed with PE
ICD9/10 codes, we found 91.36% of them have either repeating high blood
pressure above the threshold value or diagnosis and lab results of
proteinuria, suggesting the criteria of the vital and laboratory measures
from our digital phenotyping are good indicators for PE diagnosis.
Including both ICD codes and comprehensive EMR data in digital
phenotyping can allow for the identification of more patients than just
using diagnosis codes alone.
Based on when the preeclampsia occurred, we further split patients into

three sub-types: 1790 patient PE in the antepartum (before admission for
labor and delivery), 5315 patients in the intrapartum (between admission
of labor and delivery), and 1,020 patients in the postpartum (after delivery).

Experimental design
To train predictive models for PE along the pregnancy journey, we divided
the journey into 19 time points including 17 time points for antepartum
(5monthly visits spanning weeks 4–20, 7 biweekly visits spanning weeks
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22–34, and 5 weekly visits spanning weeks 35–39), and intrapartum and
postpartum periods as two independent time points with respect to
the pathophysiology of PE. We outlined our entire workflow in Fig. 1. We
collected the clinical features between 8months before pregnancy and the
time point (the protocol visit) to build a model that could predict PE risk
after the time point. We generated the PE ground-truth labels based on
our digital phenotyping algorithm which only used the clinical information
after the time point. Therefore, there was no information leakage between
the training data and the data generating ground-truth labels. We also
excluded the PE cases which already happened before each time point
when we built the time series model. We listed the PE prevalence, sample
size, number of available features, and percentage of missing values for the
Mount Sinai Hospital (MSH) training set, the Mount Sinai Hospital (MSH)
test set, and the Mount Sinai West (MSW) test set in Supplementary Table
21, respectively.
We split the data collected from MSH into a training set (60%) and a test

set (40%) and were sure that the pregnancy journeys of a single patient
only belonged to either the training set or the test set to avoid any bias.
We did not split the data using stratified sampling, but the percentage of
PE cases in both training and testing is similar (as shown in Table 1). We
trained our models using the training set for each pregnancy visit (time
point) in antepartum and each of pregnancy periods. We first divided the
training set into ten folds with respect to patients using “StratifiedGroupK-
Fold” to prepare for cross-subject validation. More specifically, the
pregnancy journeys of a patient could only belong to one-fold to avoid
the information leakage and to mimic the clinical settings. Considering our
imbalanced labels, we also employed stratified sampling to ensure that
relative class frequencies were approximately preserved in each training
and validation fold. We performed feature engineering, feature selection,
hyperparameter tuning and trained the best model using the selected best
hyperparameters within each cross-subject validation. More specifically,
within one cross-subject validation, we conducted hyperparameter tuning
100 times through another 10-folds cross-subject validation strategy that
also included feature engineering and selection to identify the best
hyperparameters, and then we used the chosen best hyperparameters to
train the final best model using all the training data (i.e. 9 training folds) in
this cross-subject validation. We evaluated the trained model performance
on the held-out fold in this cross-subject validation. We repeated
the above process on the other 9 cross-subject validations. In total, we
obtained 10 final best models, each from a cross-subject validation (see
Supplementary Fig. 6). We reported the cross-subject validation perfor-
mances with median and interquartile range (first and third quartile) of the
10 final best models. We then validated our final established models on
two independent datasets: the 40% held-out test set from MSH and
independent MSW set available until 2019 (including Mount Sinai Beth
Israel, Mount Sinai West, Mount Sinai St. Luke and Mount Sinai Upper West)
at each time point, and computed the median and the interquartile range
of the performance metrics. All population characteristics for each dataset
are shown in Table 1. We have reported AUC, SPE, SEN, PPV, and NPV for
our model validation performance and comparison with current standard
of care, a ACOG criteria-based model (Supplementary Table 20, 22, 23 and
Supplementary Figs. 4 and 5).

Feature engineering
For diagnoses, drug prescriptions and procedures, we selected first timing
(gestational week) as the feature value which could provide the timing
information to the machine learning models compared with the form of
binary feature. In order to distinguish the mode of delivery, we identified
the journeys associated with the Cesarean section using both diagnosis
and procedure codes, and the vaginal delivery by the corresponding
procedure codes, thereby leading to two additional features.
We split the vital sign data into three ranges on par with the definition of

the three pregnancy periods that might help capture the explicit
contribution of pregnancy period information to the model predictions.
In each range, we calculated the maximum pain score for the journeys if
applicable, and also included the minimum, median, and maximum values
for other numerical vital sign values observed in the interval. We observed
that different journeys involved various lengths of available vital sign data,
which increased the difficulty of directly injecting these time-related data
into the prediction models. To unify the data length and also account for
the time-related information, we applied the functional principal
component analysis (FPCA) method61 to features including diastolic blood
pressure, systolic blood pressure, O2 saturation, pulse, respirations,
temperature, and weight. The FPCA method is able to find the functional

principal components and their functional principal component scores
representing the variations of time series curves explained by the
components which naturally keep distinct information in the time series
data. We computed the top 10 functional principal component scores with
R package fdapace62 as the additional features for the journeys, if available,
to interpret the time-related vital sign features.
For lab features, we used the similar process as vital signs that we

obtained the maximum ordinal values for journeys and statistical values
(minimum, median, and maximum) for other numerical lab features in
every range. As the functional principal components are approximated
with the summation of basis functions, e.g. B-spline, we chose the lab
features at least with >3 data points to perform the FPCA, otherwise, the
program would be aborted. Based on this principle, we finally selected 15
lab features and calculated the top 10 functional principal component
scores as the additional features for each selected lab feature.
We performed the feature engineering at each time point where we

collected data from 8months before pregnancy up to the specific time
point. Collectively, we concatenated all built diagnosis, medications,
procedure, vital sign, and lab features along with the demographic. We
obtained the number of features ranging from 2989 to 3294 for 17 time
points in antepartum, 4136 for intrapartum, and 5391 for postpartum
(Supplementary Table 21).

Feature selection
Since we attained a large volume of features, it is prone to make our final
predictive models be overfitted to the training data. Consequently, we
performed three feature selection methods: (1) penalized logistic
regression with the adaptive LASSO63, (2) univariate analysis, and (3)
decision tree-based models (XGBoost and random forest)64 separately to
select a set of important features from each algorithm. Given that we
marked diagnosis, drug and procedure features as zeros when patients’
records were not presented in the journeys, we performed the adaptive
LASSO on the diagnosis, drug and procedure features to recognize the
important features with respect to sparse coefficients and the correspond-
ing p-values. Considering the proportion of missing values in vital sign and
lab features, we utilized the univariate analysis to obtain the coefficients
and p-values. Specifically, we combined all the demographic features with
a single vital sign or lab feature each time to train a logistic regression
model, in which the journeys with missing values were not considered, and
the vital sign or lab feature required to 10 or more valid values. For
adaptive LASSO and univariate analysis, we picked features with p-value <
0.05. We also exploited a random forest model and a XGBoost-trained
gradient boosted decision tree model using all the features without the
imputation of missing values. For both tree-based models, we used
bootstrap sampling with replacement using 80% of the sample, and
calculated the feature importance scores. We then picked the features ≥
75th-percentile from the two tree-based models. Finally, we only selected
the intersected features from all the methods (LASSO, univariate analysis,
XGBoost, and random forest) to build the predictive models.

Learning algorithm
In light of the complex nonlinear interactions among the extracted
features, we employed gradient boosted tree models35,65. These models
are able to address the missing values inherently that are ubiquitous in the
EMR and also the subsequently retrieved clinical features, such that we
could avoid the basis/variance induced by imputing these missing values
via the conventional approaches; e.g. mean, median, maximum and
minimum, etc. We also utilized LightGBM66, a high-performance imple-
mentation of gradient boosted tree models, to fit our clinical models and
then predict the corresponding targets, specifically, the binary classifica-
tion in our PE prediction. We used the hyperparameter optimization
package Hyperopt67, on the basis of Bayesian optimization approaches, to
automatically choose the optimal hyperparameters, including learning
rate, number of trees, depth of trees, number of leaves, sample rates, L1
and L2 regularization, and number of cases in leaf nodes in the search
space with the best performances on the designated metrics.

Model interpretation and network
Interpretability is critical in clinical settings to explain the specific impact of
each feature on the predictive results, not only at the global level (the
overall feature impact on the model output) but also at the local level (the
influence of each feature on individual sample prediction)35,65,68. The
Shapley value has been widely used to explain machine learning model
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outputs in clinical fields and capture the underlying clinical feature
attributions and influences on the clinical predictions, such as with chronic
kidney disease62. Hence, we employed Shapley values realized by SHAP
python package to obtain both local and global interpretability. The
Shapley values are attributed to game theory, and each feature in the
predictive model functions as a player in a coalition. Locally, the Shapley
value of each feature value represents the direction and the size of the
contribution for the value towards to the difference between the predicted
values and the baseline value, i.e., the expected value of the model when
we do not have any information on any features. Globally, Shapley values
evaluate the overall contribution of each feature to the model output by
averaging across all the samples. In other words, we used Shapley values to
quantify the overall contributions of the selected features in our predictive
models as well as how the value of the feature contributes to the predicted
value in our samples.
Generally, the outputs of the Shapley values using the TreeExplainer

from SHAP package are log odds of the predicted values relative to the
baseline value, which are additive. To draw the dependence plots, we
transformed from the logit space into the probability space with a sigmoid
function and calculated the relative risk (RR) score since RR is more
meaningful and is more broadly used in the clinical fields69. In the logit
space, the Shapely values can be expressed as

f xð Þ ¼ ϕ0 þ
XM

i¼1

ϕið Þ (1)

where f(x) represents the Shapely value (log odds) of sample x; ϕ0 is the
base value representing the population prevalence; ϕi is the Shapley
values for each feature capturing the difference between the expected
model output and the current prediction output; M is the number of
features. To display the dependence relationship for a single feature, we
only computed the relative risk score through the Shapley values of that
feature as follows

RRi ¼ σ ϕ0 þ ϕið Þ
σ ϕ0ð Þ (2)

where σ is the sigmoid function. We could also aggregate certain related
features into a higher level to investigate the corresponding overall feature
effect on the model output. To this end, we only need to replace ϕi withP

i2S ϕi , where S is the subset of features desired to be grouped.
Furthermore, we constructed networks connecting predictive features

with respective PE, including 17 gestational weeks during antepartum as
well as intrapartum and postpartum. It is worth noting that, to better
visually illustrate the important features and their associations with each
pregnancy period in the network, we reduced the unique feature number
from 68 to 30 for intrapartum and from 48 to 24 for postpartum,
respectively, by adding features one by one based on the rank of SHAP
importance until the prediction performance became flat (Supplementary
Fig. 3 show the feature sweeping where the features were derived from
the unique features). The nodes in the network represent the stages of PE
and identified predictive features. The edges in the network reflect two
layers of information: feature importance and adjusted odds ratio. We
applied grouped attribute layout in Cytoscape 3.7.2 to draw the network,
with node sizes proportional to their degrees, edge width proportional to
the feature importance and edge color correspond to adjusted OR. Two
networks are visualized: one with different time points across antepartum
and one with aggregated antepartum models, together with intrapartum
and postpartum models. For simplicity, features that are predictive to only
one-time point in antepartum are removed from the visualization.

Current standard of care: ACOG criteria-based model
To evaluate PE risk in the clinical practice, we assessed the predictive
model performance based on high-risk factors and all risk factors
(including high and moderate risk factors) recommended by ACOG14.
We treated each risk factor as a binary feature and calculated a risk score
for every pregnancy journey in the corresponding cohort by summing the
risk factors. The risk factors are subdivided into high-risk factors and
moderate risk factors which are described as follows14.
High-risk factors:

● History of preeclampsia, especially when accomplished by an adverse
outcome

● Multifetal gestation
● Chronic hypertension
● Type 1 and 2 diabetes

● Renal disease
● Autoimmune disease (i.e. systemic lupus erythematosus, the antipho-

spholipid syndrome)

Moderate risk factors:

● Nulliparity
● Obesity (body mass index >30)
● Family history of preeclampsia (mother or sister)
● Sociodemographic characteristics (African American race, low socio-

economic status)
● Age 35 years or older
● Personal history factors (e.g., low birth weight or small for gestational

age, previous adverse pregnancy outcome, >10-year pregnancy
interval)

We established ACOG criteria-based models based on high-risk factor
and all the risk factors (high and moderate risk factors), respectively. We
obtained the AUC using the risk score and implemented bootstrap
sampling (sampling with replacement to sample 90% of the data 1000
times) to evaluate the mean and interquartile range of the AUC values. We
had initially included all the risk factors listed on ACOG guidelines for
feature selection; however, these risk factors were not selected in our
pipeline. To better compare the static ACOG model and our proposed
models with dynamic characteristics, we also built a LightGBM model by
only using ACOG-related risk factors available at the first protocol visit
(week 4) and another model by forcing ACOG-related risk factors to be
included in our proposed model. We then evaluated the performance gain
of the model including both ACOG-related risk factors and the selected (by
pipeline) dynamic features against the proposed models and the ACOG-
risk-factor-only LightGBM model.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The clinical data here were used under license from Mount Sinai Data Warehouse in
the current study. As a result, this dataset is not publicly available. Qualified
researchers affiliated with the Mount Sinai Health Systems may apply for access to
these data through the Mount Sinai Health Systems Institutional Review Board.

CODE AVAILABILITY
We used several open-source libraries to build our machine learning model, namely
‘fdapace’ (https://github.com/functionaldata/tPACE) in R for FPCA and LightGBM
(https://lightgbm.readthedocs.io/en/latest/) and scikit-learn (https://scikit-learn.org/
stable/) in Python, and will release the code under the CC BY-NC-SA 3.0 license
(https://creativecommons.org/licenses/by-nc-sa/3.0/). However, our data collection,
cleaning and quality control framework made use of proprietary data structures and
libraries, so we are not releasing or licensing this code. We provided implementation
details in the methods section to allow for independent replication.

Received: 24 October 2020; Accepted: 19 May 2022;

REFERENCES
1. Shih, T. et al. The rising burden of preeclampsia in the United States impacts both

maternal and child health. Am. J. Perinatol. https://doi.org/10.1055/s-0035-
1564881 (2016).

2. Huppertz, B. Biology of preeclampsia: Combined actions of angiogenic factors,
their receptors and placental proteins. Biochim. Biophys. Acta Mol. Basis Dis.
https://doi.org/10.1016/j.bbadis.2018.11.024 (2020).

3. Seidler, A. L., Askie, L. & Ray, J. G. Optimal aspirin dosing for preeclampsia prevention.
Am. J. Obstetrics and Gynecol. https://doi.org/10.1016/j.ajog.2018.03.018 (2018).

4. Skalis, G. et al. MicroRNAs in Preeclampsia. MicroRNA https://doi.org/10.2174/
2211536607666180813123303 (2018).

5. Nobakht M. Gh, B. F. Application of metabolomics to preeclampsia diagnosis. Sys.
Biol. Reproductive Med. https://doi.org/10.1080/19396368.2018.1482968 (2018).

6. Tarca, A. L. et al. The prediction of early preeclampsia: results from a longitudinal
proteomics study. PLoS One https://doi.org/10.1371/journal.pone.0217273 (2019).

S. Li et al.

14

npj Digital Medicine (2022)    68 Published in partnership with Seoul National University Bundang Hospital

https://github.com/functionaldata/tPACE
https://lightgbm.readthedocs.io/en/latest/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.1055/s-0035-1564881
https://doi.org/10.1055/s-0035-1564881
https://doi.org/10.1016/j.bbadis.2018.11.024
https://doi.org/10.1016/j.ajog.2018.03.018
https://doi.org/10.2174/2211536607666180813123303
https://doi.org/10.2174/2211536607666180813123303
https://doi.org/10.1080/19396368.2018.1482968
https://doi.org/10.1371/journal.pone.0217273


7. Gray, K. J., Saxena, R. & Karumanchi, S. A. Genetic predisposition to preeclampsia is
conferred by fetal DNA variants near FLT1, a gene involved in the regulation of
angiogenesis. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2017.11.562 (2018).

8. Brodowski, L. et al. Preeclampsia-associated alteration of DNA methylation in fetal
endothelial progenitor cells. Front. Cell Dev. Biol. https://doi.org/10.3389/
fcell.2019.00032 (2019).

9. Liu, L. Y. et al. Integrating multiple ‘omics’ analyses identifies serological protein
biomarkers for preeclampsia. BMC Med. https://doi.org/10.1186/1741-7015-11-
236 (2019).

10. Serra, B. et al. A new model for screening for early-onset preeclampsia. Am. J.
Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2020.01.020 (2020).

11. Leizer, J., Cagino, S., Natenzon, A., Lynch, T. & Zelig, C. Risk factors for needing
postpartum antihypertensive medications with hypertensive disorders: Timing of
diagnosis, presence of proteinuria, and severity of disease. Pregnancy Hypertens.
25, 175–178 (2021).

12. Clapp, M. A., Little, S. E., Zheng, J. & Robinson, J. N. A multi-state analysis of
postpartum readmissions in the United States. Am. J. Obstet. Gynecol. 215, 113.
e1–113.e10 (2016).

13. Copel, J. A. et al. Gottesfeld-Hohler memorial foundation risk assessment for
early-onset preeclampsia in the United States: think tank summary. Obstet.
Gynecol. https://doi.org/10.1097/AOG.0000000000003582 (2020).

14. ACOG Practice Bulletin No. 202: gestational hypertension and preeclampsia.
Obstet. Gynecol. https://doi.org/10.1097/AOG.0000000000003018 (2019).

15. Jeyabalan, A. Epidemiology of preeclampsia: impact of obesity. Nutr. Rev. https://
doi.org/10.1111/nure.12055 (2013).

16. Green, L. J. et al. Gestation-specific vital sign reference ranges in pregnancy.
Obstet. Gynecol. https://doi.org/10.1097/AOG.0000000000003721 (2020).

17. Practice, A. A. P. C. on F. and N. and A. C. on O. Guidelines for Perinatal Care 8th
edn (American Academy of Pediatrics, 2017).

18. Sibai, B. M. et al. Risk factors for preeclampsia in healthy nulliparous women: a
prospective multicenter study. The National Institute of Child Health and Human
Development Network of Maternal-Fetal Medicine Units. Am. J. Obstet. Gynecol.
(1995).

19. Nørgaard, S. K. et al. Diastolic blood pressure is a potentially modifiable risk factor
for preeclampsia in women with pre-existing diabetes. Diabetes Res. Clin. Pract.
https://doi.org/10.1016/j.diabres.2018.02.014 (2018).

20. Conde-Agudelo, A. & Belizán, J. M. Risk factors for pre-eclampsia in a large cohort
of Latin American and Caribbean women. BJOG An Int. J. Obstet. Gynaecol. https://
doi.org/10.1111/j.1471-0528.2000.tb11582.x (2000).

21. Anderson, U. D., Jälmby, M., Faas, M. M. & Hansson, S. R. The hemoglobin
degradation pathway in patients with preeclampsia—Fetal hemoglobin, heme,
heme oxygenase-1 and hemopexin—Potential diagnostic biomarkers? Pregnancy
Hypertens. https://doi.org/10.1016/j.preghy.2018.02.005 (2018).

22. Sitotaw, C., Asrie, F. & Melku, M. Evaluation of platelet and white cell parameters
among pregnant women with Preeclampsia in Gondar, Northwest Ethiopia: a
comparative cross-sectional study. Pregnancy Hypertens. https://doi.org/10.1016/j.
preghy.2018.06.006 (2018).

23. Bartsch, E. et al. Clinical risk factors for pre-eclampsia determined in early preg-
nancy: systematic review and meta-analysis of large cohort studies. BMJ https://
doi.org/10.1136/bmj.i1753 (2016).

24. Sperling, J. D., Dahlke, J. D., Huber, W. J. & Sibai, B. M. The role of headache in the
classification and management of hypertensive disorders in pregnancy. Obstet.
Gynecol. https://doi.org/10.1097/AOG.0000000000000966 (2015).

25. Tolcher, M. C. et al. Impact of USPSTF recommendations for aspirin for prevention
of recurrent preeclampsia. Am. J. Obstet. Gynecol. (2017) https://doi.org/10.1016/j.
ajog.2017.04.035.

26. Wagner, J. L., White, R. S., Tangel, V., Gupta, S. & Pick, J. S. Socioeconomic, racial,
and ethnic disparities in postpartum readmissions in patients with preeclampsia:
a multi-state analysis, 2007–2014. J. Racial Ethn. Heal. Disparities https://doi.org/
10.1007/s40615-019-00580-1 (2019).

27. Manten, G. T. R. et al. Increased high molecular weight fibrinogen in pre-
eclampsia. Thromb. Res. https://doi.org/10.1016/j.thromres.2003.08.025 (2003).

28. Vilchez, G., Lagos, M., Kumar, K. & Argoti, P. Is mean platelet volume a better
biomarker in pre-eclampsia? J. Obstet. Gynaecol. Res. https://doi.org/10.1111/
jog.13312 (2017).

29. Yücel, B. & Ustun, B. Neutrophil to lymphocyte ratio, platelet to lymphocyte ratio,
mean platelet volume, red cell distribution width and plateletcrit in preeclampsia.
Pregnancy Hypertens. https://doi.org/10.1016/j.preghy.2016.12.002 (2017).

30. Kupfermine, M. J., Peaceman, A. M., Wigton, T. R., Rehnberg, K. A. & Socol, M. L.
Fetal fibronectin levels are elevated in maternal plasma and amniotic fluid of
patients with severe preeclampsia. Am. J. Obstet. Gynecol. https://doi.org/10.1016/
0002-9378(95)90587-1 (1995).

31. Jaiswar, S. P., Amrit, G., Rekha, S., Natu, S. N. & Mohan, S. Lactic dehydrogenase: a
biochemical marker for preeclampsia-eclampsia. J. Obstet. Gynecol. India https://
doi.org/10.1007/s13224-011-0093-9 (2011).

32. Muntner, P. et al. Measurement of blood pressure in humans: a scientific state-
ment from the american heart association. Hypertension https://doi.org/10.1161/
HYP.0000000000000087 (2019).

33. van Rijn, B. B. et al. Maternal TLR4 and NOD2 gene variants, pro-inflammatory
phenotype and susceptibility to early-onset preeclampsia and HELLP syndrome.
PLoS One https://doi.org/10.1371/journal.pone.0001865 (2008).

34. Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions.
Adv. Neural Inf. Process. Syst. https://doi.org/10.48550/arXiv.1705.07874 (2017).

35. Lundberg, S. M. et al. Explainable machine-learning predictions for the preven-
tion of hypoxaemia during surgery. Nat. Biomed. Eng. 2, 749–760 (2018).

36. Wright, D. et al. Predictive performance of the competing risk model in screening
for preeclampsia. Am. J. Obstet. Gynecol. 220, 199.e1–199.e13 (2019).

37. Wright, D., Syngelaki, A., Akolekar, R., Poon, L. C. & Nicolaides, K. H. Competing
risks model in screening for preeclampsia by maternal characteristics and med-
ical history. Am. J. Obstet. Gynecol. 213, 62.e1–62.e10 (2015).

38. Myatt, L. et al. First-trimester prediction of preeclampsia in nulliparous women at
low risk. Obstet. Gynecol. 119, 1234–1242 (2012).

39. Odibo, A. O. et al. First-trimester placental protein 13, PAPP-A, uterine artery
Doppler and maternal characteristics in the prediction of pre-eclampsia. Placenta
32, 598–602 (2011).

40. North, R. A. et al. Clinical risk prediction for pre-eclampsia in nulliparous women:
development of model in international prospective cohort. BMJ https://doi.org/
10.1136/bmj.d1875 (2011).

41. Yu, C. K. H., Smith, G. C. S., Papageorghiou, A. T., Cacho, A. M. & Nicolaides, K. H.
An integrated model for the prediction of pre-eclampsia using maternal factors
and uterine artery Doppler velocimetry in unselected low-risk women. Am. J.
Obstet. Gynecol. 195, 330 (2006).

42. Marić, I. et al. Early prediction of preeclampsia via machine learning. Am. J. Obstet.
Gynecol. MFM 2, 100100 (2020).

43. Geldenhuys, J., Rossouw, T. M., Lombaard, H. A., Ehlers, M. M. & Kock, M. M.
Disruption in the regulation of immune responses in the placental subtype of
preeclampsia. Front. Immunol. (2018) https://doi.org/10.3389/fimmu.2018.01659.

44. Davalos, D. & Akassoglou, K. Fibrinogen as a key regulator of inflammation in
disease. Semin. Immunopathol. https://doi.org/10.1007/s00281-011-0290-8 (2012).

45. Rolnik, D. L. et al. ASPRE trial: performance of screening for preterm pre-
eclampsia. Ultrasound Obstet. Gynecol. 50, 492–495 (2017).

46. Blue, N. R. et al. Effect of ibuprofen vs acetaminophen on postpartum hypertension in
preeclampsia with severe features: a double-masked, randomized controlled trial.
Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.ajog.2018.02.016 (2018).

47. Hirshberg, J. S. & Cahill, A. G. Pain relief: determining the safety of ibuprofen with
postpartum preeclampsia. Am. J. Obstet. Gynecol. https://doi.org/10.1016/j.
ajog.2018.04.026 (2018).

48. Hauspurg, A. et al. Blood pressure trajectory and category and risk of hyper-
tensive disorders of pregnancy in nulliparous women. Am. J. Obstet. Gynecol.
https://doi.org/10.1016/j.ajog.2019.06.031 (2019).

49. Whelton, P. K. et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/
NMA/PCNA Guideline for the prevention, detection, evaluation, and manage-
ment of high blood pressure in adults: executive summary: a report of the
American College of Cardiology/American Heart Association Task. Hypertens. 71,
1269–1324 (2018).

50. Wilson, E. et al. Varicella vaccine exposure during pregnancy: data from 10 years
of the pregnancy registry. J. Infect. Dis. https://doi.org/10.1086/522136 (2008).

51. Wei, W. Q. et al. Combining billing codes, clinical notes, and medications from
electronic health records provides superior phenotyping performance. J. Am.
Med. Inform. Assoc. 23, e20–e27 (2016). (e1).

52. Geller, S. E. et al. International Classification of Diseases-9th revision coding for
preeclampsia: how accurate is it? Am. J. Obstet. Gynecol. 190, 1629–1634 (2004).

53. Labgold, K. et al. Validation of hypertensive disorders during pregnancy: ICD-10
Codes in a high-burden Southeastern United States Hospital. Epidemiology 32,
591–597 (2021).

54. Rolnik, D. L. et al. Early screening and prevention of preterm pre-eclampsia with
aspirin: time for clinical implementation. Ultrasound Obstet. Gynecol. 50, 551–556
(2017).

55. Poon, L. C. et al. The International Federation of Gynecology and Obstetrics
(FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening
and prevention. Int. J. Gynecol. Obstet. https://doi.org/10.1002/ijgo.12802 (2019).

56. Sotiriadis, A. et al. ISUOG Practice Guidelines: role of ultrasound in screening for
and follow-up of pre-eclampsia. Ultrasound Obstet. Gynecol. https://doi.org/
10.1002/uog.20105 (2019).

57. O’Gorman, N. et al. Competing risks model in screening for preeclampsia by
maternal factors and biomarkers at 11-13 weeks gestation. Am. J. Obstet. Gynecol.
https://doi.org/10.1016/j.ajog.2015.08.034 (2016).

58. Cowen, M. E. et al. Casemix adjustment of managed care claims data using the
clinical classification for Health Policy Research Method. Med. Care https://doi.
org/10.1097/00005650-199807000-00016 (1998).

S. Li et al.

15

Published in partnership with Seoul National University Bundang Hospital npj Digital Medicine (2022)    68 

https://doi.org/10.1016/j.ajog.2017.11.562
https://doi.org/10.3389/fcell.2019.00032
https://doi.org/10.3389/fcell.2019.00032
https://doi.org/10.1186/1741-7015-11-236
https://doi.org/10.1186/1741-7015-11-236
https://doi.org/10.1016/j.ajog.2020.01.020
https://doi.org/10.1097/AOG.0000000000003582
https://doi.org/10.1097/AOG.0000000000003018
https://doi.org/10.1111/nure.12055
https://doi.org/10.1111/nure.12055
https://doi.org/10.1097/AOG.0000000000003721
https://doi.org/10.1016/j.diabres.2018.02.014
https://doi.org/10.1111/j.1471-0528.2000.tb11582.x
https://doi.org/10.1111/j.1471-0528.2000.tb11582.x
https://doi.org/10.1016/j.preghy.2018.02.005
https://doi.org/10.1016/j.preghy.2018.06.006
https://doi.org/10.1016/j.preghy.2018.06.006
https://doi.org/10.1136/bmj.i1753
https://doi.org/10.1136/bmj.i1753
https://doi.org/10.1097/AOG.0000000000000966
https://doi.org/10.1016/j.ajog.2017.04.035
https://doi.org/10.1016/j.ajog.2017.04.035
https://doi.org/10.1007/s40615-019-00580-1
https://doi.org/10.1007/s40615-019-00580-1
https://doi.org/10.1016/j.thromres.2003.08.025
https://doi.org/10.1111/jog.13312
https://doi.org/10.1111/jog.13312
https://doi.org/10.1016/j.preghy.2016.12.002
https://doi.org/10.1016/0002-9378(95)90587-1
https://doi.org/10.1016/0002-9378(95)90587-1
https://doi.org/10.1007/s13224-011-0093-9
https://doi.org/10.1007/s13224-011-0093-9
https://doi.org/10.1161/HYP.0000000000000087
https://doi.org/10.1161/HYP.0000000000000087
https://doi.org/10.1371/journal.pone.0001865
https://doi.org/10.48550/arXiv.1705.07874
https://doi.org/10.1136/bmj.d1875
https://doi.org/10.1136/bmj.d1875
https://doi.org/10.3389/fimmu.2018.01659
https://doi.org/10.1007/s00281-011-0290-8
https://doi.org/10.1016/j.ajog.2018.02.016
https://doi.org/10.1016/j.ajog.2018.04.026
https://doi.org/10.1016/j.ajog.2018.04.026
https://doi.org/10.1016/j.ajog.2019.06.031
https://doi.org/10.1086/522136
https://doi.org/10.1002/ijgo.12802
https://doi.org/10.1002/uog.20105
https://doi.org/10.1002/uog.20105
https://doi.org/10.1016/j.ajog.2015.08.034
https://doi.org/10.1097/00005650-199807000-00016
https://doi.org/10.1097/00005650-199807000-00016


59. Yetisen, A. K., Akram, M. S. & Lowe, C. R. Paper-based microfluidic point-of-care
diagnostic devices. Lab on a Chip https://doi.org/10.1039/c3lc50169h (2013).

60. Sammour, M. B., El-Kabarity, H., Fawzy, M. M. & Schindler, A. E. WHO Recom-
mendations for Prevention and Treatment of Pre-Eclampsia and Eclampsia (WHO,
2011).

61. Yao, F. et al. Shrinkage estimation for functional principal component scores with
application to the population kinetics of plasma folate. Biometrics https://doi.org/
10.1111/1541-0420.00078 (2003).

62. Wang, J.-L., Chiou, J.-M. & Müller, H.-G. Functional data analysis. Annu. Rev. Stat. Its
Appl. https://doi.org/10.1146/annurev-statistics-041715-033624 (2016).

63. Zou, H. & Zhang, H. H. On the adaptive elastic-net with a diverging number of
parameters. Ann. Stat. https://doi.org/10.1214/08-AOS625. (2009).

64. Chen, T. & Guestrin, C. Proc. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Association for Computing Machinery, NY, 2016).

65. Lundberg, S. M. et al. From local explanations to global understanding with
explainable AI for trees. Nat. Mach. Intell. https://doi.org/10.1038/s42256-019-
0138-9 (2020).

66. Ke, G. et al. Advances in Neural Information Processing Systems (NIPS, 2017).
67. Bergstra, J., Yamins, D. & Cox, D. D. 30th International Conference on Machine

Learning 2013 (IML, 2013).
68. Hyland, S. L. et al. Early prediction of circulatory failure in the intensive care unit

using machine learning. Nat. Med. https://doi.org/10.1038/s41591-020-0789-4.
(2020).

69. Artzi, N. S. et al. Prediction of gestational diabetes based on nationwide electronic
health records. Nat. Med. 26, 71–76 (2020).

ACKNOWLEDGEMENTS
We thank the IT group in Sema4 and Mount Sinai Health System for database
support.

AUTHOR CONTRIBUTIONS
L.L., E.E.S., S.L., and Z.W. conceived and designed the study; S.L., Z.W., B.R., A.B.Z., and
E.S. performed data extraction from MSHS; S.L., and Z.W. performed statistical analysis
and established machine learning models; S.L., Z.W., S.J.G., L.A.V., Y.-H.K., Y.K.L., S.M.D.,

and L.L. contributed clinical interpretation; S.L., Z.W., L.A.V., A.B.Z., B.R., J.S., A.B.C.,
S.J.G., E.E.S., Y.K.L., Y.L., and L.L. wrote and edited the paper.

COMPETING INTERESTS
The authors declare that they have no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41746-022-00612-x.

Correspondence and requests for materials should be addressed to Eric E. Schadt or
Li Li.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

S. Li et al.

16

npj Digital Medicine (2022)    68 Published in partnership with Seoul National University Bundang Hospital

https://doi.org/10.1039/c3lc50169h
https://doi.org/10.1111/1541-0420.00078
https://doi.org/10.1111/1541-0420.00078
https://doi.org/10.1146/annurev-statistics-041715-033624
https://doi.org/10.1214/08-AOS625
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1038/s41591-020-0789-4
https://doi.org/10.1038/s41746-022-00612-x
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Improving preeclampsia risk prediction by modeling pregnancy trajectories from routinely collected electronic medical record data
	Introduction
	Results
	Reconstructing pregnancy journeys from electronic medical record data
	Patient characteristics across a training and two independent test datasets
	Performance of predictive model across pregnancy in training set
	Refining key features during the pregnancy journey
	Assessing the dynamic progression of PE associated risk features
	Intrapartum features prioritized by importance based on SHAP values
	Postpartum features reveal novel medication effects related to racial disparities
	PE predictive model validated in two independent datasets at Mount Sinai Health System
	Comparison with published studies

	Discussion
	Methods
	Data source and pregnancy journey construction
	Digital phenotyping for PE
	Experimental design
	Feature engineering
	Feature selection
	Learning algorithm
	Model interpretation and network
	Current standard of care: ACOG criteria-based model
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




